Skip to main content
Article

Skipping Breakfast Affects the Early Steps of Cognitive Processing

An Event-Related Brain Potentials Study

Published Online:https://doi.org/10.1027/0269-8803/a000214

Abstract. It has been generally accepted that skipping breakfast adversely affects cognition, mainly disturbing the attentional processes. However, the effects of short-term fasting upon brain functioning are still unclear. We aimed to evaluate the effect of skipping breakfast on cognitive processing by studying the electrical brain activity of young healthy individuals while performing several working memory tasks. Accordingly, the behavioral results and event-related brain potentials (ERPs) of 20 healthy university students (10 males) were obtained and compared through analysis of variances (ANOVAs), during the performance of three n-back working memory (WM) tasks in two morning sessions on both normal (after breakfast) and 12-hour fasting conditions. Significantly fewer correct responses were achieved during fasting, mainly affecting the higher WM load task. In addition, there were prolonged reaction times with increased task difficulty, regardless of breakfast intake. ERP showed a significant voltage decrement for N200 and P300 during fasting, while the amplitude of P200 notably increased. The results suggest skipping breakfast disturbs earlier cognitive processing steps, particularly attention allocation, early decoding in working memory, and stimulus evaluation, and this effect increases with task difficulty.

References

  • Adam-Perrot, A., Clifton, P. & Brouns, F. (2006). Low-carbohydrate diets: Nutritional and physiological aspects. Obesity Reviews, 7, 49–58. First citation in articleCrossrefGoogle Scholar

  • Baddeley, A. (1996). The fractionation of working memory. Proceeding of the National Academic Sciences of the United States of America, 93, 13468–13472. First citation in articleCrossrefGoogle Scholar

  • Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews, 4, 829–839. https://doi.org/10.1038/nrn1201 First citation in articleCrossrefGoogle Scholar

  • Bellisle, F. (2004). Effects of diet on behaviour and cognition in children. The British Journal of Nutrition, 92(Suppl 2), S227–S232. https://doi.org/10.1079/BJN20041171 First citation in articleCrossrefGoogle Scholar

  • Benton, D. & Nabb, S. (2003). Carbohydrate, memory, and mood. Nutrition Reviews, 61, S61–S67. https://doi.org/10.1301/nr.2003.may.S61-S67 First citation in articleCrossrefGoogle Scholar

  • Blackwood, D. H. R. & Muir, W. J. (1990). Cognitive brain potentials and their application. The British Journal of Psychiatry, 9, 96–101. First citation in articleCrossrefGoogle Scholar

  • Busch, N. A. & Herrmann, C. S. (2003). Object-load and feature-load modulate EEG in a short-term memory task. Neuroreport, 14, 1721–1724. https://doi.org/10.1097/01.wnr.0000087727.58565.1b First citation in articleCrossrefGoogle Scholar

  • Carretié, L., Mercado, F., Tapia, M. & Hinojosa, J. A. (2001). Emotion, attention, and the “negativity bias,” studied through event-related potentials. International Journal of Psychophysiology, 41, 75–85. https://doi.org/10.1016/S0167-8760(00)00195-1 First citation in articleCrossrefGoogle Scholar

  • Chen, Y. N. & Mitra, S. (2009). Distinctions between spatial and verbal working memory: A study using event-related potentials. Chang Gung Medical Journal, 32, 380–389. First citation in articleGoogle Scholar

  • Chen, Y. N., Mitra, S. & Schlaghecken, F. (2008). Sub-processes of working memory in the n-back task: An investigation using ERPs. Clinical Neurophysiology, 119, 1546–1559. https://doi.org/10.1016/j.clinph.2008.03.003 First citation in articleCrossrefGoogle Scholar

  • Cromheeke, S. & Mueller, S. C. (2016). The power of a smile: Stronger working memory effects for happy faces in adolescents compared to adults. Cognition & Emotion, 30, 288–301. https://doi.org/10.1080/02699931.2014.997196 First citation in articleCrossrefGoogle Scholar

  • Cromwell, H. C., Mears, R. P., Wan, L. & Boutros, N. N. (2008). Sensory gating: A translational effort from basic to clinical science. Clinical EEG and Neuroscience, 39, 69–72. https://doi.org/10.1177/155005940803900209 First citation in articleCrossrefGoogle Scholar

  • Daffner, K. R., Chong, H., Sun, X., Tarbi, E. C., Riis, J. L., McGinnis, S. M. & Holcomb, P. J. (2011). Mechanisms underlying age- and performance-related differences in working memory. Journal of Cognitive Neuroscience, 23, 1298–1314. https://doi.org/10.1162/jocn.2010.21540 First citation in articleCrossrefGoogle Scholar

  • Dong, S., Reder, L. M., Yao, Y., Liu, Y. & Chen, F. (2015). Individual differences in working memory capacity are reflected in different ERP and EEG patterns to task difficulty. Brain Research, 1616, 146–156. https://doi.org/10.1016/j.brainres.2015.05.003 First citation in articleCrossrefGoogle Scholar

  • Donohoe, R. T. & Benton, D. (1999). Cognitive functioning is susceptible to the level of blood glucose. Psychopharmacology (Berl), 145, 378–385. https://doi.org/10.1007/s002130051071 First citation in articleCrossrefGoogle Scholar

  • Dye, L. & Blundell, J. (2002). Functional foods: Psychological and behavioural functions. The British Journal of Nutrition, 88, S187–S211. https://doi.org/10.1079/BJN2002684 First citation in articleCrossrefGoogle Scholar

  • Dye, L., Lluch, A. & Blundell, J. E. (2000). Macronutrients and mental performance. Nutrition, 16, 1021–1034. https://doi.org/10.1016/S0899-9007(00)00450-0 First citation in articleCrossrefGoogle Scholar

  • Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11, 19–23. https://doi.org/10.1111/1467-8721.00160 First citation in articleCrossrefGoogle Scholar

  • Folstein, J. R. & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45, 152–170. https://doi.org/10.1111/j.1469-8986.2007.00602.x First citation in articleCrossrefGoogle Scholar

  • Freunberger, R., Klimiesch, W., Doppelmayr, M. & Holler, Y. (2007). Visual P2 component is related to theta phase-locking. Neuroscience Letters, 426, 181–186. https://doi.org/10.1016/j.neulet.2007.08.062 First citation in articleCrossrefGoogle Scholar

  • Gevins, A. & Cutillo, B. (1993). Spatiotemporal dynamics of component processes in human working memory. Electroencephalography and Clinical Neurophysiology, 87, 128–143. First citation in articleCrossrefGoogle Scholar

  • Gray, H. M., Ambady, N., Lowenthal, W. T. & Deldin, P. (2004). P300 as an index of attention to self-relevant stimuli. Journal of Experimental Social Psychology, 40, 216–224. https://doi.org/10.1016/S0022-1031(03)00092-1 First citation in articleCrossrefGoogle Scholar

  • Gumá-Díaz, E. (2001). La memoria humana [The human memory]. In V. M. AlcarazE. GumáEds., Texto de Neurociencias Cognitivas (pp. 195–234). México D.F.: Co-ediciones El Manual Moderno-Universidad de Guadalajara-UNAM. First citation in articleGoogle Scholar

  • Hajcak, G., Dunning, J. P. & Foti, D. (2009). Motivated and controlled attention to emotion: Time-course of the late positive potential. Clinical Neurophysiology, 120, 505–510). https://doi.org/10.1016/j.clinph.2008.11.028 First citation in articleCrossrefGoogle Scholar

  • Johnstone, A. (2015). Fasting for weight loss: An effective strategy or latest dieting trend? International Journal of Obesity (Lond), 39, 727–733. https://doi.org/10.1038/ijo.2014.214 First citation in articleCrossrefGoogle Scholar

  • Jonides, J., Schumacher, E. H., Smith, E. E., Lauber, E. J., Awh, E., Minoshima, S. & Koeppe, R. A. (1997). Verbal working memory load affects regional brain activation as measured by PET. Journal of Cognitive Neuroscience, 9, 462–475. https://doi.org/10.1162/jocn.1997.9.4.462 First citation in articleCrossrefGoogle Scholar

  • Kim, N. Y., Wittenberg, E. & Nam, C. S. (2017). Behavioral and neural correlates of executive function: Interplay between inhibition and updating processes. Frontiers in Neuroscience, 11, 378. https://doi.org/10.3389/fnins.2017.00378 First citation in articleCrossrefGoogle Scholar

  • Lefebvre, C. D., Marchand, Y., Eskes, G. A. & Connolly, J. F. (2005). Assessment of working memory abilities using an event-related brain potential (ERP)-compatible digit span backward task. Clinical Neurophysiology, 116, 1665–1680. https://doi.org/10.1016/j.clinph.2005.03.015 First citation in articleCrossrefGoogle Scholar

  • Lenartowicz, A., Escobedo-Quiroz, R. & Cohen, J. D. (2010). Updating of context in working memory: An event-related potential study. Cognitive, Affective & Behavioral Neuroscience, 10, 298–315. https://doi.org/10.3758/CABN.10.2.298 First citation in articleCrossrefGoogle Scholar

  • Lijffijt, M., Lane, S. D., Meier, S. L., Boutros, N. N., Burroughs, S., Steinberg, J. L., … Swann, A. C. (2009). P50, N100, and P200 sensory gating: Relationships with behavioral inhibition, attention, and working memory. Psychophysiology, 46, 1059–1068. https://doi.org/10.1111/j.1469-8986.2009.00845.x First citation in articleCrossrefGoogle Scholar

  • Lubitz, A. F., Niedeggen, M. & Feser, M. (2017). Aging and working memory performance: Electrophysiological correlates of high and low performing elderly. Neuropsychologia, 106, 42–51. https://doi.org/10.1016/j.neuropsychologia.2017.09.002 First citation in articleCrossrefGoogle Scholar

  • Luck, S. J. & Hillyard, S. A. (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31, 291–308. https://doi.org/10.1111/j.1469-8986.1994.tb02218.x First citation in articleCrossrefGoogle Scholar

  • Macedo-Ojeda, G., Bernal-Orozco, M. F., López-Uriarte, P., Hunot, C., Vizmanos, B. & Rovillé-Sausse, F. (2008). Hábitos alimentarios en adolescentes de la Zona Urbana de Guadalajara, México [Eating habits in adolescents from the Urban Zone of Guadalajara, Mexico]. Antropo, 16, 29–41. Retrieved from https://www.didac.ehu.es/antropo First citation in articleGoogle Scholar

  • Marangoni, F., Poli, A., Agostoni, C., Di Pietro, P., Cricelli, C., Brignoli, O., … Paoletti, R. (2009). A consensus document on the role of breakfast in the attainment and maintenance of health and wellness. ActaBiomedica: Atenei Parmensis, 80, 166–171. First citation in articleGoogle Scholar

  • McEvoy, L. K., Smith, M. E. & Gevins, A. (1998). Dynamic cortical networks of verbal and spatial working memory: Effects of memory load and task practice. Cerebral Cortex, 8, 563–574. First citation in articleCrossrefGoogle Scholar

  • Meikle, A., Riby, L. M. & Stollery, B. (2005). Memory processing and the glucose facilitation effect: The effects of stimulus difficulty and memory load. Nutritional Neuroscience, 8, 227–232. https://doi.org/10.1080/10284150500193833 First citation in articleCrossrefGoogle Scholar

  • Melanson, K. J. (2008). Back-to-school nutrition. American Journal of Lifestyle Medicine, 2, 397–401. https://doi.org/10.1177/1559827608320637 First citation in articleCrossrefGoogle Scholar

  • Messier, C., Durkin, T., Mrabet, O. & Destrade, C. (1990). Memory-improving action of glucose: Indirect evidence for a facilitation of hippocampal acetylcholine synthesis. Behavioural Brain Research, 39, 135–143. https://doi.org/10.1016/0166-4328(90)90100-S First citation in articleCrossrefGoogle Scholar

  • Morgan, H. M., Klein, C., Boehm, S. G., Shapiro, K. L. & Linden, D. E. (2008). Working memory load for faces modulates P300, N170, and N250r. Journal of Cognitive Neuroscience, 20, 989–1002. https://doi.org/10.1162/jocn.2008.20072 First citation in articleCrossrefGoogle Scholar

  • Mullan, B., Wong, C., Kothe, E., O’Moore, K., Pickles, K. & Sainsbury, K. (2014). An examination of the demographic predictors of adolescent breakfast consumption, content, and context. BMC Public Health, 14, 264. https://doi.org/10.1186/1471-2458-14-264 First citation in articleCrossrefGoogle Scholar

  • Muñoz, F. & Martín-Loeches, M. (2015). Electrophysiological brain dynamics during the esthetic judgment of human bodies and faces. Brain Research, 1594, 154–164. https://doi.org/10.1016/j.brainres.2014.10.061 First citation in articleCrossrefGoogle Scholar

  • Näätänen, R. (1992). Attention and brain function. Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Nasr, S., Moeeny, A. & Esteky, H. (2008). Neural correlate of filtering of irrelevant information from visual working memory. PLoS One, 3, e3282. https://doi.org/10.1371/journal.pone.0003282 First citation in articleCrossrefGoogle Scholar

  • Owen, A. M., McMillan, K. M., Laird, A. R. & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25, 46–59. https://doi.org/10.1002/hbm.20131 First citation in articleCrossrefGoogle Scholar

  • Patel, S. H. & Azzam, P. N. (2005). Characterization of N200 and P300: Selected studies of the event-related potential. International Journal of Medical Sciences, 2, 147–154. https://doi.org/10.7150/ijms.2.147 First citation in articleCrossrefGoogle Scholar

  • Pivik, R. T., Tennal, K. B., Chapman, S. D. & Gu, Y. (2012). Eating breakfast enhances the efficiency of neural networks engaged during mental arithmetic in school-aged children. Physiology & Behavior, 106, 548–555. https://doi.org/10.1016/j.physbeh.2012.03.034 First citation in articleCrossrefGoogle Scholar

  • Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019 First citation in articleCrossrefGoogle Scholar

  • Pollitt, E., Cueto, S. & Jacoby, E. R. (1998). Fasting and cognition in well-and undernourished schoolchildren: A review of three experimental studies. The American Journal of Clinical Nutrition, 67, 779S–784S. First citation in articleCrossrefGoogle Scholar

  • Rampersaud, G. C. (2009). Benefits of breakfast for children and adolescents: Update and recommendations for practitioners. American Journal of Lifestyle Medicine, 3, 86–103. https://doi.org/10.1177/1559827608327219 First citation in articleCrossrefGoogle Scholar

  • Rampersaud, G. C., Pereira, M. A., Girard, B. L., Adams, J. & Metzl, J. D. (2005). Breakfast habits, nutritional status, body weight, and academic performance in children and adolescents. Journal of the American Dietetic Association, 105, 743–760. https://doi.org/10.1016/j.jada.2005.02.007 First citation in articleCrossrefGoogle Scholar

  • Rosenberg, M. D., Finn, E. S., Constable, R. T. & Chun, M. M. (2015). Predicting moment-to-moment attentional state. NeuroImage, 114, 249–256. https://doi.org/10.1016/j.neuroimage.2015.03.032 First citation in articleCrossrefGoogle Scholar

  • Rosenthal, J. M., Amiel, S. A., Yágüez, L., Bullmore, E., Hopkins, D., Evans, M., … Williams, S. C. (2001). The effect of acute hypoglycemia on brain function and activation: A functional magnetic resonance imaging study. Diabetes, 50, 1618–1626. https://doi.org/10.2337/diabetes.50.7.1618 First citation in articleCrossrefGoogle Scholar

  • Scharinger, C., Soutschek, A., Schubert, T. & Gerjets, P. (2015). When flanker meets the n-back: What EEG and pupil dilation data reveal about the interplay between the two central-executive working memory functions inhibition and updating. Psychophysiology, 52, 1293–1304. https://doi.org/10.1111/psyp.12500 First citation in articleCrossrefGoogle Scholar

  • Schröder, M., Müller, K., Falkenstein, M., Stehle, P., Kersting, M. & Libuda, L. (2016). Lunch at school and children’s cognitive functioning in the early afternoon: Results from the Cognition Intervention Study Dortmund Continued (CoCo). The British Journal of Nutrition, 116, 1298–1305. https://doi.org/10.1017/S0007114516002932 First citation in articleCrossrefGoogle Scholar

  • Schupp, H., Flaisch, T., Stockburger, J. & Junghöfer, M. (2006). Emotion and attention: Event-related brain potential studies. Progress in Brain Research, 156, 31–51. https://doi.org/10.1016/S0079-6123(06)56002-9 First citation in articleCrossrefGoogle Scholar

  • Shravani, S. & Sinha, V. K. (2009). Event-related potential: An overview. Industrial Psychiatry Journal, 18, 70–73. https://doi.org/10.4103/0972-6748.57865 First citation in articleCrossrefGoogle Scholar

  • Smith, E. E. & Jonides, J. (1997). Working memory: A view from neuroimaging. Cognitive Psychology, 33, 5–42. https://doi.org/10.1006/cogp.1997.0658 First citation in articleCrossrefGoogle Scholar

  • Smith, E. E. & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661. First citation in articleCrossrefGoogle Scholar

  • Sörqvist, P., Dahlström, Ö., Karlsson, T. & Rönnberg, J. (2016). Concentration: The neural underpinnings of how cognitive load shields against distraction. Frontiers in Human Neuroscience, 10, 221. https://doi.org/10.3389/fnhum.2016.00221 First citation in articleCrossrefGoogle Scholar

  • Tavitian, L. R., Ladouceur, C. D., Nahas, Z., Khater, B., Brent, D. A. & Maalouf, F. T. (2014). Neutral face distractors differentiate performance between depressed and healthy adolescents during an emotional working memory task. European Child & Adolescent Psychiatry, 23, 659–667. https://doi.org/10.1007/s00787-013-0492-9 First citation in articleCrossrefGoogle Scholar

  • Taylor, M. J., Smith, M. L. & Iron, K. S. (1990). Event-related potential evidence of sex differences in verbal and nonverbal memory tasks. Neuropsychologia, 28, 691–705. https://doi.org/10.1016/0028-3932(90)90124-7 First citation in articleCrossrefGoogle Scholar

  • Vermeulen, N., Niedenthal, P. M., Pleyers, G., Bayot, M. & Corneille, O. (2014). Emotion-specific load disrupts concomitant affective processing. The Quarterly Journal of Experimental Psychology (Hove), 67, 1655–1660. https://doi.org/10.1080/17470218.2014.905610 First citation in articleCrossrefGoogle Scholar

  • Vossen, A. Y., Ross, V., Jongen, E. M., Ruiter, R. A. & Smulders, F. T. (2016). Effect of working memory load on electrophysiological markers of visuospatial orienting in a spatial cueing task simulating a traffic situation. Psychophysiology, 53, 237–251. https://doi.org/10.1111/psyp.12572 First citation in articleCrossrefGoogle Scholar

  • Watter, S., Geffen, G. M. & Geffen, L. B. (2001). The n-back as a dual-task: P300 morphology under divided attention. Psychophysiology, 38, 998–1003. https://doi.org/10.1111/1469-8986.3860998 First citation in articleCrossrefGoogle Scholar

  • Wesnes, K. A., Pincocka, C., Richardson, D., Helmc, G. & Hails, S. (2003). Breakfast reduces declines in attention and memory over the morning in schoolchildren. Appetite, 41, 329–331. https://doi.org/10.1016/j.appet.2003.08.009 First citation in articleCrossrefGoogle Scholar

  • Yang, P., Wang, M., Jin, Z. & Li, L. (2015). Visual short-term memory load modulates the early attention and perception of task-irrelevant emotional faces. Frontiers in Human Neuroscience, 9, 490. https://doi.org/10.3389/fnhum.2015.00490 First citation in articleCrossrefGoogle Scholar

  • Yuan, Y., Leung, A. W. S., Duan, H., Zhang, L., Zhang, K., Wu, J. & Qin, S. (2016). The effects of long-term stress on neural dynamics of working memory processing: An investigation using ERP. Nature Scientific Reports, 6, 23217. https://doi.org/10.1038/srep23217 First citation in articleCrossrefGoogle Scholar

  • Zhang, Q., Yang, X., Yao, L. & Zhao, X. (2017). Working memory load-dependent spatio-temporal activity of single-trial P3 response detected with an adaptive wavelet denoiser. Neuroscience, 346, 64–73. https://doi.org/10.1016/j.neuroscience.2017.01.012 First citation in articleCrossrefGoogle Scholar

  • Zhao, X., Zhou, R. & Fu, L. (2013). Working memory updating function training influenced brain activity. PLoS One, 8, e71063. https://doi.org/10.1371/journal.pone.0071063 First citation in articleCrossrefGoogle Scholar