Skip to main content
Article

Changes in the Electroencephalographic Activity in Response to Odors Produced by Organic Compounds

Published Online:https://doi.org/10.1027/0269-8803/a000234

Abstract. Volatile organic compounds are widely used to manufacture various products in addition to research purposes. They play an important role in the air quality of outdoor and indoor with a pleasant or unpleasant odor. It is well known that the odor of chemicals with different structures can affect brain functions differently. In general, organic compounds are mainly characterized by their functional groups. Acetic acid, acetaldehyde, acetone, and acetonitrile are widely used laboratory chemicals with the same methyl group, but different functional groups. Hence, the present study was aimed to investigate whether the exposure of these four chemicals (10%) exhibits the same electroencephalographic (EEG) activity or different. For this purpose, the EEG was recorded in 20 male healthy volunteers. The EEG was recorded from 32 electrodes located on the scalp, based on the International 10–20 system with modified combinatorial nomenclature. The results indicated that tested subjects are less sensitive to acetic acid odor than other three chemicals. The absolute theta activity significantly increased at Cp5 and F8 regions, and the relative mid-beta (RMB) significantly decreased at Fc1 region during the exposure of acetic acid. On the other hand, acetaldehyde, acetone, and acetonitrile produced EEG changes in many indices such as relative theta, relative gamma, relative high beta, relative beta, relative slow beta, the ratio of alpha to high beta, and spectral edge frequencies. However, there was no significant change in the absolute wave activity. Although acetaldehyde, acetone, and acetonitrile odors affected almost similar EEG indices, they exhibited changes in different brain regions. The variations in the EEG activity of these chemicals may be due to the activation of different olfactory receptors, odor characteristics, and structural arrangements.

References

  • Angelucci, F. L., Silva, V. V., Dal Pizzol, C., Spir, L. G., Praes, C. E., & Maibach, H. (2014). Physiological effect of olfactory stimuli inhalation in humans: An overview. International Journal of Cosmetic Science, 36, 117–123. https://doi.org/10.1111/ics.12096 First citation in articleCrossrefGoogle Scholar

  • Araneda, R. C., Peterlin, Z., Zhang, X., Chesler, A., & Firestein, S. (2004). A pharmacological profile of the aldehyde receptor repertoire in rat olfactory epithelium. The Journal of Physiology, 555, 743–756. https://doi.org/10.1113/jphysiol.2003.058040 First citation in articleCrossrefGoogle Scholar

  • Basar, E. (2012). A review of alpha activity in integrative brain function: Fundamental physiology, sensory coding, cognition and pathology. International Journal of Psychophysiology, 86, 1–24. https://doi.org/10.1016/j.ijpsycho.2012.07.002 First citation in articleCrossrefGoogle Scholar

  • Boha, R., Molnar, M., Gaal, Z. A., Czigler, B., Rona, K., Kass, K., & Klausz, G. (2009). The acute effect of low–dose alcohol on working memory during mental arithmetic: I. Behavioral measures and EEG theta band spectral characteristics. International Journal of Psychophysiology, 73, 133–137. https://doi.org/10.1016/j.ijpsycho.2009.02.006 First citation in articleCrossrefGoogle Scholar

  • Brauchli, P., Ruegg, P. B., Etzweiler, F., & Zeier, H. (1995). Electrocortical and autonomic alteration by administration of a pleasant and an unpleasant odor. Chemical Senses, 20, 505–515. https://doi.org/10.1093/chemse/20.5.505 First citation in articleCrossrefGoogle Scholar

  • Buron, G., Hacquemand, R., Pourié, G., & Brand, G. (2009). Inhalation exposure to acetone induces selective damage on olfactory neuroepithelium in mice. Neurotoxicology, 30, 114–120. https://doi.org/10.1016/j.neuro.2008.11.005 First citation in articleCrossrefGoogle Scholar

  • Callejón, R. M., Morales, M. L., Troncoso, A. M., & Silva Ferreira, A. C. (2008). Targeting key aromatic substances on the typical aroma of sherry vinegar. Journal of Agricultural and Food Chemistry, 56, 6631–6639. https://doi.org/10.1021/jf703636e First citation in articleCrossrefGoogle Scholar

  • Cho, H., Sowndhararajan, K., Jung, J. W., Jhoo, J. W., & Kim, S. (2013). Fragrance chemicals in the essential oil of Mentha arvensis reduce the level of mental stress. Journal of Life Science, 23, 933–940. https://doi.org/10.5352/JLS.2013.23.7.9 First citation in articleCrossrefGoogle Scholar

  • Cho, H., Sowndhararajan, K., Jung, J. W., Jhoo, J. W., & Kim, S. (2015). Fragrant chemicals in the supercritical carbon dioxide extract of Magnolia kobus DC. Flower buds increase the concentration state of brain function. Journal of Essential Oil Bearing Plants, 18, 1059–1069. https://doi.org/10.1080/0972060X.2014.901619 First citation in articleCrossrefGoogle Scholar

  • Cho, H., Yu, B., Sowndhararajan, K., Jung, J. W., Jhoo, J. W., & Kim, S. (2013). Effect of essential oil from San-Jo-In (Zizyphus jujuba Mill. seeds) on human electroencephalographic activity. Journal of Life Science, 23, 1170–1176. https://doi.org/10.5352/JLS.2013.23.9.1170 First citation in articleCrossrefGoogle Scholar

  • Cometto-Muñiz, J. E., & Abraham, M. H. (2010). Structure-activity relationships on the odor detectability of homologous carboxylic acids by humans. Experimental Brain Research, 207, 75–84. https://doi.org/10.1007/s00221-010-2430-0 First citation in articleCrossrefGoogle Scholar

  • de Zambotti, M., Bianchin, M., Magazzini, L., Gnesato, G., & Angrilli, A. (2012). The efficacy of EEG neurofeedback aimed at enhancing sensory-motor rhythm theta ratio in healthy subjects. Experimental Brain Research, 221, 69–74. https://doi.org/10.1007/s00221-012-3148-y First citation in articleCrossrefGoogle Scholar

  • Dick, F. D. (2006). Solvent neurotoxicity. Occupational and Environmental Medicine, 63, 221–226. https://doi.org/10.1136/oem.2005.022400 First citation in articleCrossrefGoogle Scholar

  • Dorman, D. C., Struve, M. F., Wong, B. A., Gross, E. A., Parkinson, C., Willson, G. A., … Andersen, M. E. (2008). Derivation of an inhalation reference concentration based upon olfactory neuronal loss in male rats following subchronic acetaldehyde inhalation. Inhalation Toxicology, 20, 245–256. https://doi.org/10.1080/08958370701864250 First citation in articleCrossrefGoogle Scholar

  • Edagawa, K., & Kawasaki, M. (2017). Beta phase synchronization in the frontal-temporalcerebellar network during auditory-to-motor rhythm learning. Scientific Reports, 7, 42721. https://doi.org/10.1038/srep42721 First citation in articleCrossrefGoogle Scholar

  • EPA (US Environmental Protection Agency). (2007). Acetaldehyde. (Hazard Summary-Created in April 1992; Revised in January 2000). Retrieved from Technology Transfer Network, Air Toxics website, US Environmental Protection Agency. https://www.epa.gov/haps/health-effects-notebook-hazardous-air-pollutants First citation in articleGoogle Scholar

  • Floriano, W. B., Vaidehi, N., Goddard, W. A., Singer, M. S., & Shepherd, G. M. (2000). Molecular mechanisms underlying differential odor responses of a mouse olfactory receptor. Proceedings of the National Academy of Sciences of the United States of America, 97, 10712–10716. First citation in articleCrossrefGoogle Scholar

  • Greenberg, J. A., Burke, J. F., Haque, R., Kahana, M. J., & Zaghloul, K. A. (2015). Decreases in theta and increases in high frequency activity underlie associative memory encoding. NeuroImage, 114, 257–263. https://doi.org/10.1016/j.neuroimage.2015.03.077 First citation in articleCrossrefGoogle Scholar

  • Grosmaitre, X., Fuss, S. H., Lee, A. C., Adipietro, K. A., Matsunami, H., Mombaerts, P., & Ma, M. (2009). SR1, a mouse odorant receptor with an unusually broad response profile. Journal of Neuroscience, 29, 14545–14552. https://doi.org/10.1523/JNEUROSCI.2752-09.2009 First citation in articleCrossrefGoogle Scholar

  • Gruzelier, J., Egner, T., & Vernon, D. (2006). Validating the efficacy of neurofeedback for optimising performance. Progress in Brain Research, 159, 421–431. https://doi.org/10.1016/S0079-6123(06)59027-2 First citation in articleCrossrefGoogle Scholar

  • Güven, S. C., & Laska, M. (2012). Olfactory sensitivity and odor structure-activity relationships for aliphatic carboxylic acids in CD-1 mice. PLoS One, 7, e34301. https://doi.org/10.1371/journal.pone.0034301 First citation in articleCrossrefGoogle Scholar

  • Hoffmann, D., & Hecht, S. S. (1990). Advances in tobacco carcinogenesis. In C. S. CooperP. L. GroverEds., Handbook of experimental pharmacology, chemical carcinogenesis and mutagenesis 1 (Vol. 94, pp. 63–102). Heidelberg, Germany: Springer. https://doi.org/10.1007/978-3-642-74775-5_3 First citation in articleGoogle Scholar

  • Howells, F. M., Stein, D. J., & Russell, V. A. (2010). Perceived mental effort correlates with changes in tonic arousal during attentional tasks. Behavioral and Brain Functions, 6, 39. https://doi.org/10.1186/1744-9081-6-39 First citation in articleCrossrefGoogle Scholar

  • IARC (International Agency for Research on Cancer). (1985). Allyl compounds, aldehydes, epoxides and peroxides [IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 36]. Lyon, France: IARC. First citation in articleGoogle Scholar

  • Iijima, M., Osawa, M., Nishitani, N., & Iwata, M. (2009). Effects of incense on brain function: Evaluation using electroencephalograms and event–related potentials. Neuropsychobiology, 59, 80–86. https://doi.org/10.1159/000209859 First citation in articleCrossrefGoogle Scholar

  • Johnson, B. A., Arguello, S., & Leon, M. (2007). Odorants with multiple oxygen-containing functional groups and other odorants with high water solubility preferentially activate posterior olfactory bulb glomeruli. Journal of Comparative Neurology, 502, 468–482. https://doi.org/10.1002/cne.21322 First citation in articleCrossrefGoogle Scholar

  • Keski-Säntti, P., Kovala, T., Holm, A., Hyvärinen, H. K., & Sainio, M. (2008). Quantitative EEG in occupational chronic solvent encephalopathy. Human & Experimental Toxicology, 27, 315–320. https://doi.org/10.1177/0960327107082231 First citation in articleCrossrefGoogle Scholar

  • Kim, D. K., Rhee, J. H., & Kang, S. W. (2014). Reorganization of the brain and heart rhythm during autogenic meditation. Frontiers in Integrative Neuroscience, 7, 109. https://doi.org/10.3389/fnint.2013.00109 First citation in articleCrossrefGoogle Scholar

  • Kim, M., Sowndhararajan, K., Kim, T., Kim, J. E., Yang, J. E., & Kim, S. (2017). Gender differences in electroencephalographic activity in response to the earthy odorants geosmin and 2-methylisoborneol. Applied Sciences, 7, 876. https://doi.org/10.3390/app7090876 First citation in articleCrossrefGoogle Scholar

  • Kim, M., Sowndhararajan, K., Park, S. J., & Kim, S. (2018). Effect of inhalation of isomers, (+)-α-pinene and (+)-β-pinene on human electroencephalographic activity according to gender difference. European Journal of Integrative Medicine, 17, 33–39. https://doi.org/10.1016/j.eujim.2017.11.005 First citation in articleCrossrefGoogle Scholar

  • Kober, S. E., Witte, M., Ninaus, M., Neuper, C., & Wood, G. (2013). Learning to modulate one’s own brain activity: The effect of spontaneous mental strategies. Frontiers in Human Neuroscience, 7, 695. https://doi.org/10.3389/fnhum.2013.00695 First citation in articleCrossrefGoogle Scholar

  • Laing, D. G., Legha, P. K., Jinks, A. L., & Hutchinson, I. (2003). Relationship between molecular structure, concentration and odor qualities of oxygenated aliphatic molecules. Chemical Senses, 28, 57–69. https://doi.org/10.1093/chemse/28.1.57 First citation in articleCrossrefGoogle Scholar

  • Lee, B. G., Lee, B. L., & Chung, W. Y. (2014). Mobile healthcare for automatic driving sleep-onset detection using wavelet-based EEG and respiration signals. Sensors, 14, 17915–17936. https://doi.org/10.3390/s141017915 First citation in articleCrossrefGoogle Scholar

  • Levicheva, N. A., & Berchenko, O. G. (2014). Brain electrical activity and peculiarities of the self-stimulation reaction in pubertate rats with addiction to inhalation of organic solvent vapors. Neurophysiology, 46, 521–523. https://doi.org/10.1007/s11062-015-9483-4 First citation in articleCrossrefGoogle Scholar

  • Malnic, B., Hirono, J., Sato, T., & Buck, L. B. (1999). Combinatorial receptor codes for odors. Cell, 96, 713–723. https://doi.org/10.1016/S0092-8674(00)80581-4 First citation in articleCrossrefGoogle Scholar

  • Matsubara, E., Fukagawa, M., Okamoto, T., Ohnuki, K., Shimizu, K., & Kondo, R. (2011). The essential oil of Abies sibirica (Pinaceae) reduces arousal levels after visual display terminal work. Flavour and Fragrance Journal, 26, 204–210. https://doi.org/10.1002/ffj.2056 First citation in articleCrossrefGoogle Scholar

  • Minguillon, J., Lopez-Gordo, M. A., & Pelayo, F. (2016). Stress assessment by prefrontal relative gamma. Frontiers in Computational Neuroscience, 10, 101. https://doi.org/10.3389/fncom.2016.00101 First citation in articleCrossrefGoogle Scholar

  • Muttray, A., Martus, P., Schachtrup, S., Müller, E., Mayer-Popken, O., & Konietzko, J. (2005). Acute effects of an organic solvent mixture on the human central nervous system. European Journal of Medical Research, 10, 381–388. First citation in articleGoogle Scholar

  • Nagasawa, Y., Samoto, H., Ukai, H., Okamoto, S., Itoh, K., Hanada, T., … Ikeda, M. (2013). Use of organic solvents in large research institutions in Japan. Environmental Health and Preventive Medicine, 18, 341–348. https://doi.org/10.1007/s12199-012-0327-1 First citation in articleCrossrefGoogle Scholar

  • NRC (National Research Council). (2009). Acetaldehyde in emergency and continuous exposure guidance levels for selected submarine contaminants (Vol. 3), Washington, DC: National Academy Press. First citation in articleGoogle Scholar

  • Razumnikova, O. M. (2007). Creativity related cortex activity in the remote associates task. Brain Research Bulletin, 73, 96–102. https://doi.org/10.1016/j.brainresbull.2007.02.008 First citation in articleCrossrefGoogle Scholar

  • Repicky, S. E., & Luetje, C. W. (2009). Molecular receptive range variation among mouse odorant receptors for aliphatic carboxylic acids. Journal of Neurochemistry, 109, 193–202. https://doi.org/10.1111/j.1471-4159.2009.05925.x First citation in articleCrossrefGoogle Scholar

  • Ros, T., Moseley, M. J., Bloom, P. A., Benjamin, L., Parkinson, L. A., & Gruzelier, J. H. (2009). Optimizing microsurgical skills with EEG neurofeedback. BMC Neuroscience, 10, 87. https://doi.org/10.1186/1471-2202-10-87 First citation in articleCrossrefGoogle Scholar

  • Ruth, J. H. (1986). Odor thresholds and irritation levels of several chemical substances: A review. American Industrial Hygiene Association Journal, 47, A142–A151. https://doi.org/10.1080/15298668691389595 First citation in articleCrossrefGoogle Scholar

  • Saletu, B., Anderer, P., Saletu-Zyhlarz, G. M., Arnold, O., & Pascual-Marqui, R. D. (2002). Classification and evaluation of the pharmacodynamics of psychotropic drugs by single-lead pharmaco-EEG, EEG mapping and tomography (LORETA). Methods and Findings in Experimental and Clinical Pharmacology, 24, 97–120. First citation in articleGoogle Scholar

  • Sayorwan, W., Siripornpanich, V., Piriyapunyaporn, T., Hongratanaworakit, T., Kotchabhakdi, N., & Ruangrungsi, N. (2012). The effects of lavender oil inhalation on emotional states, autonomic nervous system, and brain electrical activity. Journal of the Medical Association of Thailand, 95, 598–606. First citation in articleGoogle Scholar

  • Sayowan, W., Siripornpanich, V., Hongratanaworakit, T., Kotchabhakdi, N., & Ruangrungsi, N. (2013). The effects of jasmine oil inhalation on brain wave activities and emotions. Journal of Health Research, 27, 73–77. First citation in articleGoogle Scholar

  • Schwender, D., Daunderer, M., Mulzer, S., Klasing, S., Finsterer, U., & Peter, K. (1996). Spectral edge frequency of the electroencephalogram to monitor “depth” of anaesthesia with isoflurane and propofol. British Journal of Anaesthesia, 77, 179–184. First citation in articleCrossrefGoogle Scholar

  • Seo, M., Sowndhararajan, K., & Kim, S. (2016). Influence of binasal and uninasal inhalations of essential oil of Abies koreana twigs on electroencephalographic activity of human. Behavioural Neurology, 2016, 9250935. https://doi.org/10.1155/2016/9250935 First citation in articleCrossrefGoogle Scholar

  • Seppalainen, A. M., Laine, A., Salmi, T., Verkkala, E., Riihimäki, V., & Luukkonen, R. (1991). Electroencephalographic findings during experimental human exposure to m-xylene. Archives of Environmental Health, 46, 16–24. https://doi.org/10.1080/00039896.1991.9937424 First citation in articleCrossrefGoogle Scholar

  • Simoes de Souza, F. M., & Antunes, G. (2007). Biophysics of olfaction. Reports on Progress in Physics, 70, 451–491. https://doi.org/10.1088/0034-4885/70/3/R04 First citation in articleCrossrefGoogle Scholar

  • Sowndhararajan, K., Cho, H., Yu, B., Song, J., & Kim, S. (2016). Effect of inhalation of essential oil from Inula helenium L. root on electroencephalographic (EEG) activity of the human brain. European Journal of Integrative Medicine, 8, 453–457. https://doi.org/10.1016/j.eujim.2016.01.005 First citation in articleCrossrefGoogle Scholar

  • Sowndhararajan, K., & Kim, S. (2016). Influence of fragrances on human psychophysiological activity: With special reference to human electroencephalographic response. Scientia Pharmaceutica, 84, 724–751. https://doi.org/10.3390/scipharm84040724 First citation in articleCrossrefGoogle Scholar

  • Sowndhararajan, K., Seo, M., Kim, M., Kim, H., & Kim, S. (2017). Effect of inhalation of essential oil and supercritical carbon dioxide extract from the root of Angelica gigas Nakai on human EEG activity. Complementary Therapies in Clinical Practice, 28, 161–168. https://doi.org/10.1016/j.ctcp.2017.05.010 First citation in articleCrossrefGoogle Scholar

  • Tonner, P. H., & Bein, B. (2006). Classic electroencephalographic parameters: Median frequency, spectral edge frequency etc. Best Practice & Research: Clinical Anaesthesiology, 20, 147–159. https://doi.org/10.1016/j.bpa.2005.08.008 First citation in articleCrossrefGoogle Scholar

  • Touhara, K., & Vosshall, L. B. (2009). Sensing odorants and pheromones with chemosensory receptors. Annual Review of Physiology, 71, 307–332. https://doi.org/10.1146/annurev.physiol.010908.163209 First citation in articleCrossrefGoogle Scholar

  • Weiss, S., & Mueller, H. M. (2012). “Too many betas do not spoil the broth”: The role of beta brain oscillations in language processing. Frontiers in Psychology, 3, 201. https://doi.org/10.3389/fpsyg.2012.00201 First citation in articleCrossrefGoogle Scholar

  • WHO (World Health Organization). (1998). Environmental health criteria 207, acetone. Geneva, Switzerland: International Programme on Chemical Safety. Retrieved from http://www.inchem.org/documents/ehc/ehc/ehc207.htm First citation in articleGoogle Scholar

  • Wysocki, C. J., Dalton, P., Brody, M. J., & Lawley, H. J. (1997). Acetone odor and irritation thresholds obtained from acetone-exposed factory workers and from control (occupationally unexposed) subjects. American Industrial Hygiene Association Journal, 58, 704–712. https://doi.org/10.1080/15428119791012342 First citation in articleCrossrefGoogle Scholar

  • Zarzo, M. (2012). Effect of functional group and carbon chain length on the odor detection threshold of aliphatic compounds. Sensors, 12, 4105–4112. https://doi.org/10.3390/s120404105 First citation in articleCrossrefGoogle Scholar