Skip to main content
Article

The Influence of Background Auditory Noise on P50 and N100 Suppression Elicited by the Paired-Click Paradigm

Published Online:https://doi.org/10.1027/0269-8803/a000245

Abstract. Auditory sensory gating is commonly assessed using the Paired-Click Paradigm (PCP), an electroencephalography (EEG) task in which two identical sounds are presented sequentially and the brain’s inhibitory response to the second sound is measured. Many clinical populations demonstrate reduced P50 and/or N100 suppression. Testing sensory gating in children may help to identify individuals at risk for neurodevelopmental disorders earlier, including autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), which could lead to more optimal outcomes. Minimal research has been done with children because of the difficulty of performing lengthy EEG experiments with young children, requiring them to sit still for long periods of time. We designed a modified, potentially child-friendly version of the PCP and evaluated it in typically developing adults. The PCP was administered twice, once in a traditional silent room (silent movie condition) and once with an audible movie playing (audible movie condition) to minimize boredom and enhance behavioral compliance. We tested whether P50 and N100 suppression were influenced by the presence of the auditory background noise from the movie. N100 suppression was observed in both hemispheres in the silent movie condition and in the left hemisphere only during the audible movie condition, though suppression was attenuated in the audible movie condition. P50 suppression was not observed in either condition. N100 sensory gating was successfully elicited with an audible movie playing during the PCP, supporting the use of the modified task for future research in both children and adults.

References

  • Adler, L. E., Freedman, R., Ross, R. G., Olincy, A., & Waldo, M. C. (1999). Elementary phenotypes in the neurobiological and genetic study of schizophrenia. Biological Psychiatry, 46, 8–18. https://doi.org/10.1016/S0006-3223(99)00085-2 First citation in articleCrossrefGoogle Scholar

  • Belouchrani, A., Abed-Meraim, K., Cardoso, J. F., & Moulines, E. (1993). Second order blind separation of temporally correlated sources. In A. G. ConstantinidesV. CappelliniC. S. PattichisC. N. SchizasEds., Proceedings of the International Conference on Digital Signal Processing and II International Conference on Computer Applications to Engineering Systems (pp. 346–351). Nicosia, Cyprus: University of Cyprus. First citation in articleGoogle Scholar

  • Boutros, N. N., Belger, A., Campbell, D., D’Souza, C., & Krystal, J. (1999). Comparison of four components of sensory gating in schizophrenia and normal subjects: A preliminary report. Psychiatry Research, 88, 119–130. https://doi.org/10.1016/S0165-1781(99)00074-8 First citation in articleCrossrefGoogle Scholar

  • Boutros, N. N., Gjini, K., Urbach, H., & Pflieger, M. E. (2011). Mapping repetition suppression of the N100 evoked response to the human cerebral cortex. Biological Psychiatry, 69, 883–889. https://doi.org/10.1016/j.biopsych.2010.12.011 First citation in articleCrossrefGoogle Scholar

  • Brockhaus-Dumke, A., Schultze-Lutter, F., Mueller, R., Tendolkar, I., Bechdolf, A., Pukrop, R., … Ruhrmann, S. (2008). Sensory gating in schizophrenia: P50 and N100 gating in antipsychotic-free subjects at risk, first-episode, and chronic patients. Biological Psychiatry, 64, 376–384. https://doi.org/10.1016/j.biopsych.2008.02.006 First citation in articleCrossrefGoogle Scholar

  • Brown, K. J., Gonsalvez, C. J., Harris, A. W. F., Williams, L. M., & Gordon, E. (2002). Target and non-target ERP disturbances in first episode vs. chronic schizophrenia. Clinical Neurophysiology, 113, 1754–1763. https://doi.org/10.1016/S1388-2457(02)00290-0 First citation in articleCrossrefGoogle Scholar

  • Chen, C. H., Ninomiya, H., & Onitsuka, T. (1997). Influence of reference electrodes, stimulation characteristics and task paradigms on auditory P50. Psychiatry and Clinical Neurosciences, 51, 139–143. https://doi.org/10.1111/j.1440-1819.1997.tb02376.x First citation in articleCrossrefGoogle Scholar

  • Cheng, C. H., Chan, P. Y. S., Liu, C. Y., & Hsu, S. C. (2016). Auditory sensory gating in patients with bipolar disorders: A meta-analysis. Journal of Affective Disorders, 203, 199–203. https://doi.org/10.1016/j.jad.2016.06.010 First citation in articleCrossrefGoogle Scholar

  • Clementz, B. A., Geyer, M. A., & Braff, D. L. (1997). P50 Suppression among schizophrenia and normal comparison subjects: A methodological analysis. Biological Psychiatry, 41, 1035–1044. https://doi.org/10.1016/S0006-3223(96)00208-9 First citation in articleCrossrefGoogle Scholar

  • Davies, P. L., Chang, W. P., & Gavin, W. J. (2009). Maturation of sensory gating performance in children with and without sensory processing disorders. International Journal of Psychophysiology, 72, 187–197. https://doi.org/10.1016/j.ijpsycho.2008.12.007 First citation in articleCrossrefGoogle Scholar

  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009 First citation in articleCrossrefGoogle Scholar

  • Edgar, J. C., Huang, M. X., Weisend, M. P., Sherwood, A., Miller, G. A., Adler, L. E., & Cañive, J. M. (2003). Interpreting abnormality: An EEG and MEG study of P50 and the auditory paired-stimulus paradigm. Biological Psychology, 65, 1–20. https://doi.org/10.1016/S0301-0511(03)00094-2 First citation in articleCrossrefGoogle Scholar

  • Engel-Yeger, B., Hardal-Nasser, R., & Gal, E. (2011). Sensory processing dysfunctions as expressed among children with different severities of intellectual developmental disabilities. Research in Developmental Disabilities, 32, 1770–1775. https://doi.org/10.1016/j.ridd.2011.03.005 First citation in articleCrossrefGoogle Scholar

  • Fuerst, D. R., Gallinat, J., & Boutros, N. N. (2007). Range of sensory gating values and test–retest reliability in normal subjects. Psychophysiology, 44, 620–626. https://doi.org/10.1111/j.1469-8986.2007.00524.x First citation in articleCrossrefGoogle Scholar

  • Green, D. L., Payne, L., Polikar, R., Moberg, P. J., Wolk, D. A., & Kounios, J. (2015). P50: A candidate ERP biomarker of prodromal Alzheimer’s disease. Brain Research, 1624, 390–397. https://doi.org/10.1016/j.brainres.2015.07.054 First citation in articleCrossrefGoogle Scholar

  • Griskova-Bulanova, I., Paskevic, J., Dapsys, K., Maciulis, V., Ruksenas, O., & Arnfred, S. M. (2011). The level of arousal modulates P50 peak amplitude. Neuroscience Letters, 499, 204–207. https://doi.org/10.1016/j.neulet.2011.05.062 First citation in articleCrossrefGoogle Scholar

  • Griskova-Bulanova, I., Ruksenas, O., Dapsys, K., Maciulis, V., & Arnfred, S. M. (2012). P50 potential-associated gamma band activity: Modulation by distraction. Acta Neurobiologiae Experimentalis, 72, 102–109. First citation in articleGoogle Scholar

  • Hsieh, M. H., Liu, K., Liu, S.-K., Chiu, M.-J., Hwu, H.-G., & Chen, A. C. N. (2004). Memory impairment and auditory evoked potential gating deficit in schizophrenia. Psychiatry Research, 130, 161–169. https://doi.org/10.1016/j.pscychresns.2002.12.001 First citation in articleCrossrefGoogle Scholar

  • Hunter, S. K., Gillow, S. J., & Ross, R. G. (2015). Stability of P50 auditory sensory gating during sleep from infancy to 4 years of age. Brain and Cognition, 94, 4–9. https://doi.org/10.1016/j.bandc.2014.12.004 First citation in articleCrossrefGoogle Scholar

  • Hutchison, A. K., Hunter, S. K., Wagner, B. D., Calvin, E. A., Zerbe, G. O., & Ross, R. G. (2017). Diminished infant P50 sensory gating predicts increased 40-month-old attention, anxiety/depression, and externalizing symptoms. Journal of Attention Disorders, 21, 209–218. https://doi.org/10.1177/1087054713488824 First citation in articleCrossrefGoogle Scholar

  • Jansen, B. H., Hu, L., & Boutros, N. N. (2010). Auditory evoked potential variability in healthy and schizophrenia subjects. Clinical Neurophysiology, 121, 1233–1239. https://doi.org/10.1016/j.clinph.2010.03.006 First citation in articleCrossrefGoogle Scholar

  • Jerger, K., Biggins, C., & Fein, G. (1992). P50 suppression is not affected by attentional manipulations. Biological Psychiatry, 31, 365–377. https://doi.org/10.1016/0006-3223(92)90230-W First citation in articleCrossrefGoogle Scholar

  • Keidel, W., & Spreng, M. (1965). Neurophysiological evidence for the Stevens power function in man. The Journal of the Acoustical Society of America, 38, 191–195. https://doi.org/10.1121/1.1909629 First citation in articleCrossrefGoogle Scholar

  • Kisley, M. A., Noecker, T. L., & Guinther, P. M. (2004). Comparison of sensory gating to mismatch negativity and self-reported perceptual phenomena in healthy adults. Psychophysiology, 41, 604–612. https://doi.org/10.1111/j.1469-8986.2004.00191.x First citation in articleCrossrefGoogle Scholar

  • Kisley, M. A., Polk, S. D., Ross, R. G., Levisohn, P. M., & Freedman, R. (2003). Early postnatal development of sensory gating. Neuroreport, 14, 693–697. https://doi.org/10.1097/01.wnr.0000064988.96259.b8 First citation in articleCrossrefGoogle Scholar

  • Light, G. A., Williams, L. E., Minow, F., Sprock, J., Rissling, A., Sharp, R., … Braff, D. L. (2010). Electroencephalography (EEG) and Event-Related Potentials (ERP’s) with human participants. Current Protocols in Neuroscience, 52, 6.25.1–6.25.24. https://doi.org/10.1002/0471142301.ns0625s52 First citation in articleCrossrefGoogle Scholar

  • Lijffijt, M., Cox, B., Acas, M. D., Lane, S. D., Moeller, F. G., & Swann, A. C. (2012). Differential relationships of impulsivity or antisocial symptoms on P50, N100, or P200 auditory sensory gating in controls and antisocial personality disorder. Journal of Psychiatric Research, 46, 743–750. https://doi.org/10.1016/j.jpsychires.2012.03.001 First citation in articleCrossrefGoogle Scholar

  • Lijffijt, M., Lane, S. D., Meier, S. L., Boutros, N. N., Burroughs, S., Steinberg, J. L., … Swann, A. C. (2009). P50, N100, and P200 sensory gating: Relationships with behavioral inhibition, attention, and working memory. Psychophysiology, 46, 1059–1068. https://doi.org/10.1111/j.1469-8986.2009.00845.x First citation in articleCrossrefGoogle Scholar

  • Madsen, G. F., Bilenberg, N., Jepsen, J. R., Glenthøj, B., Cantio, C., & Oranje, B. (2015). Normal P50 gating in children with autism, yet attenuated P50 amplitude in the Asperger subcategory. Autism Research, 8, 371–378. https://doi.org/10.1002/aur.1452 First citation in articleCrossrefGoogle Scholar

  • Mayer, A. R., Hanlon, F. M., Franco, A. R., Teshiba, T. M., Thoma, R. J., Clark, V. P., & Canive, J. M. (2009). The neural networks underlying auditory sensory gating. NeuroImage, 44, 182–189. https://doi.org/10.1016/j.neuroimage.2008.08.025 First citation in articleCrossrefGoogle Scholar

  • Micoulaud-Franchi, J. A., Vaillant, F., Lopez, R., Peri, P., Baillif, A., Brandejsky, L., … Vion-Dury, J. (2015). Sensory gating in adult with attention-deficit/hyperactivity disorder: Event-evoked potential and perceptual experience reports comparisons with schizophrenia. Biological Psychology, 107, 16–23. https://doi.org/10.1016/j.biopsycho.2015.03.002 First citation in articleCrossrefGoogle Scholar

  • Moura, G. S., Triñanes-Pego, Y., & Carrillo-de-la-Peña, M. T. (2010). Effects of stimuli intensity and frequency on auditory P50 and N100 sensory gating. In A. HussainI. AleksanderL. SmithA. BarrosR. ChisleyV. CutsuridisEds., Brain Inspired Cognitive Systems (pp. 5–17). New York, NY: Springer. https://doi.org/10.1007/978-0-387-79100-5_1 First citation in articleGoogle Scholar

  • Nagamoto, H. T., Adler, L. E., Waldo, M. C., & Freedman, R. (1989). Sensory gating in schizophrenics and normal controls: Effects of changing stimulation interval. Biological Psychiatry, 25, 549–561. https://doi.org/10.1016/0006-3223(89)90215-1 First citation in articleCrossrefGoogle Scholar

  • Ninomiya, H., Sato, E., Onitsuka, T., Hayashida, T., & Tashiro, N. (2000). Auditory P50 obtained with a repetitive stimulus paradigm shows suppression to high-intensity tones. Psychiatry and Clinical Neuroscience, 54, 493–7. https://doi.org/10.1046/j.1440-1819.2000.00741.x First citation in articleCrossrefGoogle Scholar

  • Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 156869. https://doi.org/10.1155/2011/156869 First citation in articleCrossrefGoogle Scholar

  • Orekhova, E. V., Stroganova, T. A., Prokofyev, A. O., Nygren, G., Gillberg, C., & Elam, M. (2008). Sensory gating in young children with autism: Relation to age, IQ, and EEG gamma oscillations. Neuroscience Letters, 434, 218–223. https://doi.org/10.1016/j.neulet.2008.01.066 First citation in articleCrossrefGoogle Scholar

  • Pang, E. W., & Taylor, M. J. (2000). Tracking the development of the N1 from age 3 to adulthood: An examination of speech and non-speech stimuli. Clinical Neurophysiology, 111, 388–397. https://doi.org/10.1016/S1388-2457(99)00259-X First citation in articleCrossrefGoogle Scholar

  • Rae, K., Adams, K., Lasseter, J., Reher, K., Drumm, M. A. (Producers), Gibbs, R., Lasseter, J., & Navone, V. (Directors) (2008). Mater’s tall tales [Motion picture]. Emeryville, CA: Pixar Animation Studios First citation in articleGoogle Scholar

  • Rentzsch, J., Jockers-Scherübl, M. C., Boutros, N. N., & Gallinat, J. (2008). Test–retest reliability of P50, N100 and P200 auditory sensory gating in healthy subjects. International Journal of Psychophysiology, 67, 81–90. https://doi.org/10.1016/j.ijpsycho.2007.10.006 First citation in articleCrossrefGoogle Scholar

  • Smith, A. K., Edgar, J. C., Huang, M., Lu, B. Y., Thoma, R. J., Hanlon, F. M., … Cañive, J. M. (2010). Cognitive abilities and 50 and 100 ms paired-click processes in schizophrenia. The American Journal of Psychiatry, 167, 1264–1275. https://doi.org/10.1176/appi.ajp.2010.09071059 First citation in articleCrossrefGoogle Scholar

  • Smith, D. A., Boutros, N. N., & Schwarzkopf, S. B. (1994). Reliability of P50 auditory event-related potential indices of sensory gating. Psychophysiology, 31, 495–502. https://doi.org/10.1111/j.1469-8986.1994.tb01053.x First citation in articleCrossrefGoogle Scholar

  • Stroganova, T. A., Kozunov, V. V., Posikera, I. N., Galuta, I. A., Gratchev, V. V., & Orekhova, E. V. (2013). Abnormal pre-attentive arousal in young children with autism spectrum disorder contributes to their atypical auditory behavior: An ERP study. PLoS One, 8, e69100. https://doi.org/10.1371/journal.pone.0069100 First citation in articleCrossrefGoogle Scholar

  • Swann, A. C., Lijffijt, M., Lane, S. D., Steinberg, J. L., Acas, M. D., Cox, B., & Moeller, F. G. (2013). Pre-attentive information processing and impulsivity in bipolar disorder. Journal of Psychiatric Research, 47, 1917–1924. https://doi.org/10.1016/j.jpsychires.2013.08.018 First citation in articleCrossrefGoogle Scholar

  • Tager-Flusberg, H., Plesa Skwerer, D., Joseph, R. M., Brukilacchio, B., Decker, J., Eggleston, B., … Yoder, A. (2017). Conducting research with minimally verbal participants with autism spectrum disorder. Autism, 21, 852–861. https://doi.org/10.1177/1362361316654605 First citation in articleCrossrefGoogle Scholar

  • Wan, L., Friedman, B. H., Boutros, N. N., & Crawford, H. J. (2008). P50 sensory gating and attentional performance. International Journal of Psychophysiology, 67, 91–100. https://doi.org/10.1016/j.ijpsycho.2007.10.008 First citation in articleCrossrefGoogle Scholar