Skip to main content
Article

Auditory Sensory Gating and the Big Five Personality Factors

Published Online:https://doi.org/10.1027/0269-8803/a000229

Abstract. Sensory gating allows an individual to filter out irrelevant sensory information from the environment, potentially freeing attentional resources for more complex tasks. Some work has demonstrated a relationship between auditory sensory gating and cognitive skills such as executive function, although the functional significance is not well understood. The relationship between sensory gating and personality dimensions has not been adequately explored. Participants completed a paired-tone sensory gating event-related potential (ERP) paradigm and the Big Five Inventory to assess personality characteristics. Participants with more robust P50 sensory gating reported a significantly greater degree of conscientiousness; conscientiousness (but not the other Big Five factors) predicted sensory gating ability. Longer ERP latencies were associated with participants being more conscientious (P50 component), more agreeable, and less neurotic (N100 component). A better understanding of the behavioral correlates of sensory gating will help elucidate the functional consequences of reduced sensory gating both in typical adults and clinical groups.

References

  • Adler, L. E., Hoffer, L. J., Griffith, J., Waldo, M. C. & Freedman, R. (1992). Normalization by nicotine of deficient auditory sensory gating in the relatives of schizophrenics. Biological Psychiatry, 32, 607–616. https://doi.org/10.1016/0006-3223(92)90073-9 First citation in articleCrossrefGoogle Scholar

  • Adler, L. E., Hoffer, L., Nagamoto, H. T., Waldo, M. C., Kisley, M. A. & Griffith, J. M. (1994). Yohimbine impairs P50 auditory sensory gating in normal subjects. Neuropsychopharmacology, 10, 249–257. https://doi.org/10.1038/npp.1994.28 First citation in articleCrossrefGoogle Scholar

  • Adler, L. E., Hoffer, L. D., Wiser, A. & Freedman, R. (1993). Normalization of auditory physiology by cigarette smoking in schizophrenic patients. American Journal of Psychiatry, 150, 1856–1861. https://doi.org/10.1176/ajp.150.12.1856 First citation in articleCrossrefGoogle Scholar

  • Ahadi, B. & Basharpoor, S. (2010). Relationship between sensory processing sensitivity, personality dimensions and mental health. Journal of Applied Sciences, 10, 570–574. https://doi.org/10.3923/jas.2010.570.574 First citation in articleCrossrefGoogle Scholar

  • Arciniegas, D., Olincy, A., Topkoff, J., McRae, K., Cawthra, E., Filley, C. M., … Adler, L. E. (2000). Impaired auditory gating and P50 nonsuppression following traumatic brain injury. The Journal of Neuropsychiatry & Clinical Neurosciences, 12, 77–85. https://doi.org/10.1176/jnp.12.1.77 First citation in articleCrossrefGoogle Scholar

  • Aron, E. N. & Aron, A. (1997). Sensory-processing sensitivity and its relation to introversion and emotionality. Journal of Personality and Social Psychology, 73, 345–368. https://doi.org/10.1037//0022-3514.73.2.345 First citation in articleCrossrefGoogle Scholar

  • Boutros, N. N., Gjini, K., Eickhoff, S. B., Urbach, H. & Pflieger, M. E. (2013). Mapping repetition suppression of the P50 evoked response to the human cerebral cortex. Clinical Neurophysiology, 124, 675–685. https://doi.org/10.1016/j.clinph.2012.10.007 First citation in articleCrossrefGoogle Scholar

  • Boutros, N. N., Korzyukov, O., Jansen, B., Feingold, A. & Bell, M. (2004). Sensory-gating deficits during the midlatency phase of information processing in medicated schizophrenia patients. Psychiatry Research, 126, 203–215. https://doi.org/10.1016/s0165-1781(04)00016-2 First citation in articleCrossrefGoogle Scholar

  • Buchanan, T. (2016). Self-report measures of executive function problems correlate with personality, not performance-based executive function measures, in nonclinical samples. Psychological Assessment, 28, 372–385. https://doi.org/10.1037/pas0000192 First citation in articleCrossrefGoogle Scholar

  • Carter, N. T., Guan, L., Maples, J. L., Williamson, R. L. & Miller, J. D. (2016). The downsides of extreme conscientiousness for psychological well-being: The role of obsessive compulsive tendencies. Journal of Personality, 84, 510–522. https://doi.org/10.1111/jopy.12177 First citation in articleCrossrefGoogle Scholar

  • Chao, L. L. & Knight, R. T. (1995). Human prefrontal lesions increase distractibility to irrelevant sensory inputs. Neuroreport, 6, 1605–1610. https://doi.org/10.1097/00001756-199508000-00005 First citation in articleCrossrefGoogle Scholar

  • Clementz, B. A., Geyer, M. A. & Braff, D. L. (1998). Poor P50 suppression among schizophrenia patients and their first-degree biological relatives. American Journal of Psychiatry, 155, 1691–1694. https://doi.org/10.1176/ajp.155.12.1691 First citation in articleCrossrefGoogle Scholar

  • Costa, P. J. & McCrae, R. R. (2008). The NEO Inventories. In R. P. ArcherS. R. SmithR. P. ArcherS. R. SmithEds., Personality assessment (pp. 213–245). New York, NY: Routledge/Taylor & Francis Group. First citation in articleGoogle Scholar

  • Croft, R. J., Lee, A., Bertolot, J. & Gruzelier, J. H. (2001). Associations of P50 suppression and desensitization with perception and cognitive features of “unreality” in schizotypy. Biological Psychiatry, 50, 441–446. https://doi.org/10.1016/s0006-3223(01)01082-4 First citation in articleCrossrefGoogle Scholar

  • Croy, I., Springborn, M., Lötsch, J., Johnston, A. N. B. & Hummel, T. (2011). Agreeable smellers and sensitive neurotics – correlations among personality traits and sensory thresholds. PLoS One, 6, 1–9. https://doi.org/10.1371/journal.pone.0018701 First citation in articleCrossrefGoogle Scholar

  • Csomor, P. A., Stadler, R. R., Feldon, J., Yee, B. K., Geyer, M. A. & Vollenweider, F. X. (2008). Haloperidol differentially modulates prepulse inhibition and P50 suppression in healthy humans stratified for low and high gating levels. Neuropsychopharmacology, 33, 497–512. https://doi.org/10.1038/sj.npp.1301421 First citation in articleCrossrefGoogle Scholar

  • Derryberry, D. & Reed, M. (1999). Dopaminergic influences beyond extraversion [Peer commentary on the journal article “Neurobiology of the structure of personality: Dopamine, facilitation of incentive motivation, and extraversion,” by R. A. Depue & P. F. Collins, https://doi.org/10.1017/s0140525x99002046]. Behavioral and Brain Sciences, 22, 521. First citation in articleCrossrefGoogle Scholar

  • DeYoung, C. G., Hirsh, J. B., Shane, M. S., Papademetris, X., Rajeevan, N. & Gray, J. R. (2010). Testing predictions from personality neuroscience: Brain structure and the Big Five. Psychological Science, 21, 820–828. https://doi.org/10.1177/0956797610370159 First citation in articleCrossrefGoogle Scholar

  • DeYoung, C. G., Peterson, J. B. & Higgins, D. M. (2002). Higher-order factors of the Big Five predict conformity: Are there neuroses of health? Personality and Individual Differences, 33, 533–552. https://doi.org/10.1016/s0191-8869(01)00171-4 First citation in articleCrossrefGoogle Scholar

  • Edwards, C. R., Skosnik, P. D., Steinmetz, A. B., O’Donnell, B. F. & Hetrick, W. P. (2009). Sensory gating impairments in heavy cannabis users are associated with altered neural oscillations. Behavioral Neuroscience, 123, 894–904. https://doi.org/10.1037/a0017386 First citation in articleCrossrefGoogle Scholar

  • Ehlis, A.-C., Ringel, T. M., Plichta, M. M., Richter, M. M., Herrmann, M. J. & Fallgatter, A. J. (2009). Cortical correlates of auditory sensory gating: A simultaneous near-infrared spectroscopy event-related potential study. Neuroscience, 159, 1032–1043. https://doi.org/10.1016/j.neuroscience.2009.01.015 First citation in articleCrossrefGoogle Scholar

  • Feldt, R. C., Jen, L. & Dew, D. (2014). Criterion validity of facets versus domains of the Big Five Inventory. Individual Differences Research, 12, 112–122. First citation in articleGoogle Scholar

  • Forbes, C. E., Poore, J. C., Krueger, F., Barbey, A. K., Solomon, J. & Grafman, J. (2014). The role of executive function and the dorsolateral prefrontal cortex in the expression of neuroticism and conscientiousness. Social Neuroscience, 9, 139–151. https://doi.org/10.1080/17470919.2013.871333 First citation in articleCrossrefGoogle Scholar

  • Freedman, R., Adler, L. E., Waldo, M. C., Pachtman, E. & Franks, R. D. (1983). Neurophysiological evidence for a defect in inhibitory pathways in schizophrenia: Comparison of medicated and drug-free patients. Biological Psychiatry, 18, 537–551. First citation in articleGoogle Scholar

  • Ghisolfi, E. S., Schuch, A., Strimitzer, I. M. Jr., Luersen, G., Martins, F. F., Ramos, F. L. P., … Lara, D. R. (2006). Caffeine modulates P50 auditory sensory gating in healthy subjects. European Neuropsychopharmacology, 16, 204–210. https://doi.org/10.1016/j.euroneuro.2005.09.001 First citation in articleCrossrefGoogle Scholar

  • Gilbert, C. D. & Sigman, M. (2007). Brain states: Top-down influences in sensory processing. Neuron, 54, 677–696. https://doi.org/10.1016/j.neuron.2007.05.019 First citation in articleCrossrefGoogle Scholar

  • Gosling, S. D., Rentfrow, P. J. & Swann, W. B. Jr. (2003). A very brief measure of the Big-Five personality domains. Journal of Research in Personality, 37, 504–528. https://doi.org/10.1016/s0092-6566(03)00046-1 First citation in articleCrossrefGoogle Scholar

  • Guterman, Y., Josiassen, R. C. & Bashore, T. R. (1992). Attentional influence on the P50 component of the auditory event-related brain potential. International Journal of Psychophysiology, 12, 197–209. https://doi.org/10.1016/0167-8760(92)90011-y First citation in articleCrossrefGoogle Scholar

  • Havlíček, J., Nováková, L., Vondrová, M., Kubena, A. A., Valentová, J. & Roberts, S. C. (2012). Olfactory perception is positively linked to anxiety in young adults. Perception, 41, 1246–1261. https://doi.org/10.1068/p7244 First citation in articleCrossrefGoogle Scholar

  • Hetrick, W. P., Erickson, M. A. & Smith, D. A. (2012). Phenomenological dimensions of sensory gating. Schizophrenia Bulletin, 38, 178–191. https://doi.org/10.1093/schbul/sbq054 First citation in articleCrossrefGoogle Scholar

  • Hirsh, J. B., DeYoung, C. G. & Peterson, J. B. (2009). Metatraits of the Big Five differentially predict engagement and restraint of behavior. Journal of Personality, 77, 1085–1101. https://doi.org/10.1111/j.1467-6494.2009.00575.x First citation in articleCrossrefGoogle Scholar

  • Jagiellowicz, J., Xu, X., Aron, A., Aron, E., Cao, G., Feng, T. & Weng, X. (2011). The trait of sensory processing sensitivity and neural responses to changes in visual scenes. Social Cognitive and Affective Neuroscience, 6, 38–47. https://doi.org/10.1093/scan/nsq001 First citation in articleCrossrefGoogle Scholar

  • Jasper, H. H. (1958). Report of the committee on methods of clinical examination in electroencephalography. Electroencephalography and Clinical Neurophysiology, 10, 370–375. https://doi.org/10.1016/0013-4694(58)90053-1 First citation in articleCrossrefGoogle Scholar

  • Javitt, D. C. & Freedman, R. (2015). Sensory processing dysfunction in the personal experience and neuronal machinery of schizophrenia. American Journal of Psychiatry, 172, 17–31. https://doi.org/10.1176/appi.ajp.2014.13121691 First citation in articleCrossrefGoogle Scholar

  • John, O. P., Donahue, E. M. & Kentle, R. L. (1991). The Big Five Inventory – Versions 4a and 54. Berkeley, CA: University of California, Berkeley, Institute of Personality and Social Research. First citation in articleGoogle Scholar

  • John, O. P., Naumann, L. P. & Soto, C. J. (2008). Paradigm shift to the integrative Big-Five trait taxonomy: History, measurement, and conceptual issues. In O. P. JohnR. W. RobinsL. A. PervinEds., Handbook of personality: Theory and research (pp. 114–158). New York, NY: Guilford Press. First citation in articleGoogle Scholar

  • John, O. P. & Srivastava, S. (1999). The Big Five trait taxonomy: History, measurement, and theoretical perspective. In L. A. PervinO. P. JohnEds., Handbook of personality: Theory and research (2nd ed., pp. 102–138). New York, NY: Guilford Press. First citation in articleGoogle Scholar

  • Kisley, M. A., Noecker, T. L. & Guinther, P. M. (2004). Comparison of sensory gating to mismatch negativity and self-reported perceptual phenomena in healthy adults. Psychophysiology, 41, 604–612. https://doi.org/10.1111/j.1469-8986.2004.00191.x First citation in articleCrossrefGoogle Scholar

  • Kizkin, S., Karlidag, R., Ozcan, C. & Ozisik, H. I. (2006). Reduced P50 auditory sensory gating response in professional musicians. Brain and Cognition, 61, 249–254. https://doi.org/10.1016/j.bandc.2006.01.006 First citation in articleCrossrefGoogle Scholar

  • Knott, V. J., Fisher, D. J. & Millar, A. M. (2010). Differential effects of nicotine on P50 amplitude, its gating, and their neural sources in low and high suppressors. Neuroscience, 170, 816–826. https://doi.org/10.1016/j.neuroscience.2010.07.012 First citation in articleCrossrefGoogle Scholar

  • Korzyukov, O., Pflieger, M. E., Wagner, M., Bowyer, S. M., Rosburg, T., Sundaresa, K., … Boutros, N. N. (2007). Generators of the intracranial P50 response in auditory sensory gating. NeuroImage, 35, 814–826. https://doi.org/10.1016/j.neuroimage.2006.12.011 First citation in articleCrossrefGoogle Scholar

  • Kurthen, M., Trautner, P., Rosburg, T., Grunwald, T., Dietl, T., Kühn, K., … Boutros, N. N. (2007). Towards a functional topography of sensory gating areas: Invasive P50 recording and electrical stimulation mapping in epilepsy surgery candidates. Psychiatry Research, 155, 121–133. https://doi.org/10.1016/j.pscychresns.2006.10.003 First citation in articleCrossrefGoogle Scholar

  • Lijffijt, M., Cox, B., Acas, M. D., Lane, S. D., Moeller, G. & Swann, A. C. (2012). Differential relationships of impulsivity or antisocial symptoms on P50, N100, or P200 auditory sensory gating in controls and antisocial personality disorder. Journal of Psychiatric Research, 46, 743–750. https://doi.org/10.1016/j.jpsychires.2012.03.001 First citation in articleCrossrefGoogle Scholar

  • Lijffijt, M., Lane, S. D., Meier, S. L., Boutros, N. N., Burroughs, S., Steinberg, J. L., … Swann, A. C. (2009). P50, N100, and P200 sensory gating: Relationships with behavioral inhibition, attention, and working memory. Psychophysiology, 46, 1059–1068. https://doi.org/10.1111/j.1469-8986.2009.00845.x First citation in articleCrossrefGoogle Scholar

  • Lijffijt, M., Moeller, F. G., Boutros, N. N., Burroughs, S., Lane, S. D., Steinberg, J. L. & Swann, A. C. (2009). The role of age, gender, education, and intelligence on P50, N100, and P200 auditory sensory gating. Journal of Psychophysiology, 23, 52–62. https://doi.org/10.1027/0269-8803.23.2.52 First citation in articleLinkGoogle Scholar

  • Lijffijt, M., Moeller, F. G., Boutros, N. N., Steinberg, J. L., Meier, S. L., Lane, S. D. & Swann, A. C. (2009). Diminished P50, N100, and P200 auditory sensory gating in bipolar I disorder. Psychiatry Research, 167, 191–201. https://doi.org/10.1016/j.psychres.2008.04.001 First citation in articleCrossrefGoogle Scholar

  • Mann, C., Croft, R. J., Scholes, K. E., Dunne, A., O’Neill, B. V., Leung, S., … Nathan, P. J. (2008). Differential effects of acute serotonin and dopamine depletion on prepulse inhibition and P50 suppression measures of sensorimotor and sensory gating in humans. Neuropsychopharmacology, 33, 1653–1666. https://doi.org/10.1038/sj.npp.1301556 First citation in articleCrossrefGoogle Scholar

  • Manuk, S. B., Flory, J. D., McCaffery, J. M., Matthews, K. A., Mann, J. J. & Muldoon, M. F. (1998). Aggression, impulsivity, and central nervous system serotonergic responsivity in a nonpatient sample. Neuropsychopharmacology, 19, 287–299. https://doi.org/10.1016/s0893-133x(98)00015-3 First citation in articleCrossrefGoogle Scholar

  • Mayer, A. R., Hanlon, F. M., Franco, A. R., Teshiba, T. M., Thoma, R. J., Clark, V. P. & Canive, J. M. (2009). The neural networks underlying auditory sensory gating. NeuroImage, 44, 182–189. https://doi.org/10.1016/j.neuroimage.2008.08.025 First citation in articleCrossrefGoogle Scholar

  • Miller, E. K. & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202. https://doi.org/10.1146/annurev.neuro.24.1.167 First citation in articleCrossrefGoogle Scholar

  • Mubarik, A. & Tohid, H. (2016). Frontal lobe alterations in schizophrenia: A review. Trends in Psychiatry and Psychotherapy, 38, 198–206. https://doi.org/10.1590/2237-6089-2015-0088 First citation in articleCrossrefGoogle Scholar

  • Nagamoto, H. T., Adler, L. E., Waldo, M. C., Griffith, J. & Freedman, R. (1991). Gating of auditory response in schizophrenics and normal controls: Effects of recording site and stimulation interval on the P50 wave. Schizophrenia Research, 4, 31–40. https://doi.org/10.1016/0920-9964(91)90007-E First citation in articleCrossrefGoogle Scholar

  • Patterson, J. V., Hetrick, W. P., Boutros, N. N., Jin, Y., Sandman, C., Stern, H. & Bunney, W. E. Jr. (2008). P50 sensory gating ratios in schizophrenics and controls: A review and data analysis. Psychiatry Research, 158, 226–247. https://doi.org/10.1016/j.psychres.2007.02.009 First citation in articleCrossrefGoogle Scholar

  • Rentzsch, J., Gomez-Carrillo de Castro, A., Neuhaus, A., Jockers-Scherübl, M. C. & Gallinat, J. (2008). Comparison of midlatency auditory sensory gating at short and long interstimulus intervals. Neuropsychobiology, 58, 11–18. https://doi.org/10.1159/000154475 First citation in articleCrossrefGoogle Scholar

  • Roberts, B. W., Lejuez, C., Krueger, R. F., Richards, J. M. & Hill, P. L. (2014). What is conscientiousness and how can it be assessed? Developmental Psychology, 50, 1315–1330. https://doi.org/10.1037/a0031109 First citation in articleCrossrefGoogle Scholar

  • Smolewska, K. A., McCabe, S. B. & Woody, E. Z. (2006). A psychometric evaluation of the Highly Sensitive Person scale: The components of sensory -processing sensitivity and their relation to the BIS/BAS and “Big Five”. Personality and Individual Differences, 40, 1269–1279. https://doi.org/10.1016/j.paid.2005.09.022 First citation in articleCrossrefGoogle Scholar

  • Soto, C. J. & John, O. P. (2017). The next Big Five Inventory (BFI-2): Developing and assessing a hierarchical model with 15 facets to enhance bandwidth, fidelity, and predictive power. Journal of Personality and Social Psychology, 113, 117–143. https://doi.org/10.1037/pspp0000155 First citation in articleCrossrefGoogle Scholar

  • Strelets, V. B., Arkhipov, A. Y. & Garakh, Zh. V. (2016). Latencies of the sensory and cognitive components of event-related potentials on perception of verbal stimuli in health and schizophrenia. Neuroscience and Behavioral Physiology, 46, 1024–1030. https://doi.org/10.1007/s11055-016-0348-0 First citation in articleCrossrefGoogle Scholar

  • Terada, H., Kurayama, T., Nakazawa, K., Matsuzawa, D. & Shimizu, E. (2015). Transcranial direct current stimulation (tDCS) on the dorsolateral prefrontal cortex alters P50 gating. Neuroscience Letters, 602, 139–144. https://doi.org/10.1016/j.neulet.2015.07.003 First citation in articleCrossrefGoogle Scholar

  • Truelove-Hill, M. & Yadon, C. A. (2015). Auditory sensory gating and performance on the Delis–Kaplan Executive Function System. Journal of Cognitive Psychology, 27, 909–920. https://doi.org/10.1080/20445911.2015.1053486 First citation in articleCrossrefGoogle Scholar

  • Tupes, E. C. & Christal, R. E. (1961). Recurrent personality factors based on trait ratings. Lackland Air Force Base, TX: Personnel Laboratory, Air Force Systems Command. (Technical Report ASD-TR-61-97). https://doi.org/10.21236/ad0267778 First citation in articleCrossrefGoogle Scholar

  • Venables, P. H. (1964). Input dysfunction in schizophrenia. Progress in Experimental Personality Research, 72, 1–47. First citation in articleGoogle Scholar

  • Wang, J., Miyazato, H., Hokama, H., Hiramatsu, K.-I. & Kondo, T. (2004). Correlation between P50 suppression and psychometric schizotypy among non-clinical Japanese subjects. International Journal of Psychophysiology, 52, 147–157. https://doi.org/10.1016/j.ijpsycho.2003.06.001 First citation in articleCrossrefGoogle Scholar

  • Yadon, C. A., Bugg, J. M., Kisley, M. A. & Davalos, D. B. (2009). P50 sensory gating is related to performance on select tasks of cognitive inhibition. Cognitive, Affective, & Behavioral Neuroscience, 9, 448–458. https://doi.org/10.3758/cabn.9.4.448 First citation in articleCrossrefGoogle Scholar

  • Young, J. W. & Geyer, M. A. (2013). Evaluating the role of the alpha-7 nicotinic acetylcholine receptor in the pathophysiology and treatment of schizophrenia. Biochemical Pharmacology, 86, 1122–1132. https://doi.org/10.1016/j.bcp.2013.06.031 First citation in articleCrossrefGoogle Scholar

  • Zabelina, D. L., O’Leary, D., Pornpattananangkul, N., Nusslock, R. & Beeman, M. (2015). Creativity and sensory gating indexed by the P50: Selective versus leaky sensory gating in divergent thinkers and creative achievers. Neuropsychologia, 69, 77–84. https://doi.org/10.1016/j.neuropsychologia.2015.01.034 First citation in articleCrossrefGoogle Scholar