Skip to main content
Published Online:https://doi.org/10.1027/0269-8803/a000212

Abstract. According to conflict-monitoring theory (Botvinick, Braver, Barch, Carter, & Cohen, 2001), sequential adjustments in cognitive control indicate that encountering information-processing conflict engages cognitive-control mechanisms. With 20 participants in an event-related-potential (ERP) experiment, we found significant congruence-sequence effects (CSEs) for behavioral measures and for N2 amplitude, a negative-going ERP component established in previous work to be related to cognitive control. We also found an interaction between the Stroop-trajectory manipulation and a response-compatibility manipulation for behavioral measures and, to a lesser extent, for N2 amplitude, such that the Stroop-trajectory congruence effect was larger on response-compatible than on response-incompatible trials. This study is the first to identify N2 amplitude as a neural correlate of the CSE in a confound-minimized task. Accordingly, these results found N2 amplitude to be associated with adjustments in cognitive control as a function of sequential and response-facilitation effects while also validating the Stroop-trajectory task as a confound-minimized means of assessing neural correlates of CSEs.

References

  • Azizian, A., Freitas, A. L., Parvaz, M. A. & Squires, N. K. (2006). Beware misleading cues: Perceptual similarity modulates the N2/P3 complex. Psychophysiology, 43, 253–260. https://doi.org/10.1111/j.1469-8986.2006.00409.x First citation in articleCrossrefGoogle Scholar

  • Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S. & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652. https://doi.org/10.1037/0033-295x.108.3.624 First citation in articleCrossrefGoogle Scholar

  • Bruin, K. J. & Wijers, A. A. (2002). Inhibition, response mode, and stimulus probability: A comparative event-related potential study. Clinical Neurophysiology, 113, 1172–1182. https://doi.org/10.1016/S1388-2457(02)00141-4 First citation in articleCrossrefGoogle Scholar

  • Bugg, J. M. (2008). Opposing influences on conflict-driven adaptation in the Eriksen flanker task. Memory & Cognition, 36, 1217–1227. https://doi.org/10.3758/mc.36.7.1217 First citation in articleCrossrefGoogle Scholar

  • Carter, C. S. & van Veen, V. (2007). Anterior cingulate cortex and conflict detection: An update of theory and data. Cognitive, Affective & Behavioral Neuroscience, 7, 367–379. https://doi.org/10.3758/CABN.7.4.367 First citation in articleCrossrefGoogle Scholar

  • Clayson, P. E. & Larson, M. J. (2011a). Conflict adaptation and sequential trial effects: Support for the conflict monitoring theory. Neuropsychologia, 49, 1953–1961. https://doi.org/10.1016/j.neuropsychologia.2011.03.023 First citation in articleCrossrefGoogle Scholar

  • Clayson, P. E. & Larson, M. J. (2011b). Effects of repetition priming on electrophysiological and behavioral indices of conflict adaptation and cognitive control. Psychophysiology, 48, 1621–1630. https://doi.org/10.1111/j.1469-8986.2011.01265.x First citation in articleCrossrefGoogle Scholar

  • De Jong, R., Liang, C. C. & Lauber, E. (1994). Conditional and unconditional automaticity: A dual-process model of effects of spatial stimulus-response correspondence. Journal of Experimental Psychology: Human Perception and Performance, 20, 731–750. https://doi.org/10.1037/0096-1523.20.4.731 First citation in articleCrossrefGoogle Scholar

  • Delorme, A. & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009 First citation in articleCrossrefGoogle Scholar

  • Donkers, F. C. & van Boxtel, G. J. (2004). The N2 in go/NoGo tasks reflects conflict monitoring not response inhibition. Brain and Cognition, 56, 165–176. https://doi.org/10.1016/j.bandc.2004.04.005 First citation in articleCrossrefGoogle Scholar

  • Duthoo, W., Abrahamse, E. L., Braem, S. & Notebaert, W. (2014). Going, going, gone? Proactive control prevents the congruency sequence effect from rapid decay. Psychological Research, 78, 483–493. https://doi.org/10.1007/s00426-013-0498-4 First citation in articleCrossrefGoogle Scholar

  • Feldman, J. L., Clark, S. L. & Freitas, A. L. (2015). Conflict adaptation within but not across NoGo decision criteria: Event-related-potential evidence of specificity in the contextual modulation of cognitive control. Biological Psychology, 109, 132–140. https://doi.org/10.1016/j.biopsycho.2015.05.001 First citation in articleCrossrefGoogle Scholar

  • Feldman, J. L. & Freitas, A. L. (2016). An investigation of the reliability and self-regulatory correlates of conflict adaptation. Experimental Psychology, 63, 237–247. https://doi.org/10.1027/1618-3169/a000328 First citation in articleLinkGoogle Scholar

  • Folstein, J. R. & van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45, 152–170. https://doi.org/10.1111/j.1469-8986.2007.00602.x First citation in articleCrossrefGoogle Scholar

  • Freitas, A. L., Banai, R. & Clark, S. L. (2009). When cognitive control is calibrated: Event-related potential correlates of adapting to information-processing conflict despite erroneous response preparation. Psychophysiology, 46, 1226–1233. https://doi.org/10.1111/j.1469-8986.2009.00864.x First citation in articleCrossrefGoogle Scholar

  • Freitas, A. L. & Clark, S. L. (2015). Generality and specificity in cognitive control: Conflict adaptation within and across selective-attention tasks but not across selective-attention and Simon tasks. Psychological Research, 79, 143–162. https://doi.org/10.1007/s00426-014-0540-1 First citation in articleCrossrefGoogle Scholar

  • Greenhouse, S. W. & Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24, 95–112. https://doi.org/10.1007/BF02289823 First citation in articleCrossrefGoogle Scholar

  • Hommel, B. (1997). Interactions between stimulus-stimulus congruence and stimulus-response compatibility. Psychological Research, 59, 248–260. https://doi.org/10.1007/BF00439302 First citation in articleCrossrefGoogle Scholar

  • Hommel, B. (1998). Event files: Evidence for automatic integration of stimulus-response episodes. Visual Cognition, 5, 183–216. https://doi.org/10.1080/713756773 First citation in articleCrossrefGoogle Scholar

  • Hommel, B. (2004). Event files: Feature binding in and across perception and action. Trends in Cognitive Sciences, 8, 494–500. https://doi.org/10.1016/j.tics.2004.08.007 First citation in articleCrossrefGoogle Scholar

  • Hughes, G., Velmans, M. & De Fockert, J. (2009). Unconscious priming of a no-go response. Psychophysiology, 46, 1258–1269. https://doi.org/10.1111/j.1469-8986.2009.00873.x First citation in articleCrossrefGoogle Scholar

  • Jodo, E. & Kayama, Y. (1992). Relation of a negative ERP component to response inhibition in a Go/No-go task. Electroencephalography and Clinical Neurophysiology, 82, 477–482. https://doi.org/10.1016/0013-4694(92)90054-L First citation in articleCrossrefGoogle Scholar

  • Kopp, B., Mattler, U., Goertz, R. & Rist, F. (1996). N2, P3 and the lateralized readiness potential in a nogo task involving selective response priming. Electroencephalography and Clinical Neurophysiology, 99, 19–27. https://doi.org/10.1016/0921-884X(96)95617-9 First citation in articleCrossrefGoogle Scholar

  • Kornblum, S., Hasbroucq, T. & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility – A model and taxonomy. Psychological Review, 97, 253–270. https://doi.org/10.1037/0033-295X.97.2.253 First citation in articleCrossrefGoogle Scholar

  • Kornblum, S., Stevens, G. T., Whipple, A. & Requin, J. (1999). The effects of irrelevant stimuli: 1. The time course of stimulus-stimulus and stimulus-response consistency effects with Stroop-like stimuli, Simon-like tasks, and their factorial combinations. Journal of Experimental Psychology: Human Perception and Performance, 25, 688–714. https://doi.org/10.1037/0096-1523.25.3.688 First citation in articleCrossrefGoogle Scholar

  • Larson, M. J. & Clayson, P. E. (2011). The relationship between cognitive performance and electrophysiological indices of performance monitoring. Cognitive, Affective & Behavioral Neuroscience, 11, 159–171. https://doi.org/10.3758/s13415-010-0018-6 First citation in articleCrossrefGoogle Scholar

  • Larson, M. J., Clayson, P. E. & Clawson, A. (2014). Making sense of all the conflict: A theoretical review and critique of conflict-related ERPs. International Journal of Psychophysiology, 93, 283–297. https://doi.org/10.1016/j.ijpsycho.2014.06.007 First citation in articleCrossrefGoogle Scholar

  • Larson, M. J., Clayson, P. E., Kirwan, C. B. & Weissman, D. H. (2016). Event-related potential indices of congruency sequence effects without feature integration or contingency learning confounds. Psychophysiology, 53, 814–822. https://doi.org/10.1111/psyp.12625 First citation in articleCrossrefGoogle Scholar

  • Mayr, U., Awh, E. & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6, 450–452. https://doi.org/10.1038/nn1051 First citation in articleCrossrefGoogle Scholar

  • Neill, W. T., Valdes, L. A., Terry, K. M. & Gorfein, D. S. (1992). Persistence of negative priming: II. Evidence for episodic trace retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 993–1000. https://doi.org/10.1037/0278-7393.18.5.993 First citation in articleCrossrefGoogle Scholar

  • Nieuwenhuis, S., Yeung, N., van den Wildenberg, W. & Ridderinkhof, K. R. (2003). Electrophysiological correlates of anterior cingulate function in a go/NoGo task: Effects of response conflict and trial type frequency. Cognitive, Affective & Behavioral Neuroscience, 3, 17–26. https://doi.org/10.3758/CABN.3.1.17 First citation in articleCrossrefGoogle Scholar

  • Rey-Mermet, A. & Gade, M. (2016). Contextual within-trial adaptation of cognitive control: Evidence from the combination of conflict tasks. Journal of Experimental Psychology: Human Perception and Performance, 42, 1505–1532. https://doi.org/10.1037/xhp0000229 First citation in articleCrossrefGoogle Scholar

  • Rustamov, N., Rodriguez-Raecke, R., Timm, L., Agrawal, D., Dressler, D., Schrader, C., … Kopp, B. (2013). Absence of congruency sequence effects reveals neurocognitive inflexibility in Parkinson’s disease. Neuropsychologia, 51, 2976–2987. https://doi.org/10.1016/j.neuropsychologia.2013.10.025 First citation in articleCrossrefGoogle Scholar

  • Schmidt, J. R. & De Houwer, J. (2011). Now you see it, now you don’t: Controlling for contingencies and stimulus repetitions eliminates the Gratton effect. Acta Psychologica, 138, 176–186. https://doi.org/10.1016/j.actpsy.2011.06.002 First citation in articleCrossrefGoogle Scholar

  • Schmidt, J. R. & Weissman, D. H. (2014). Congruency sequence effects without feature integration or contingency learning confounds. PLoS One, 9, 1–9. https://doi.org/10.1371/journal.pone.0102337 First citation in articleCrossrefGoogle Scholar

  • Simon, J. R., Paullin, C., Overmyer, S. P. & Berbaum, K. (1985). Reaction time to word meaning and ink color of laterally-presented Stroop stimuli: Effects of handedness and sex. The International Journal of Neuroscience, 28, 21–33. https://doi.org/10.3109/00207458509070816 First citation in articleCrossrefGoogle Scholar

  • Spapé, M. M. & Hommel, B. (2014). Sequential modulations of the Simon effect depend on episodic retrieval. Frontiers in Psychology, 5, 1–15. https://doi.org/10.3389/fpsyg.2014.00855 First citation in articleGoogle Scholar

  • Tipper, S. P. (1985). The negative priming effect: Inhibitory priming by ignored objects. The Quarterly Journal of Experimental Psychology, 37, 571–590. https://doi.org/10.1080/14640748508400920 First citation in articleCrossrefGoogle Scholar

  • Treccani, B., Cubelli, R., Sala, S. D. & Umiltà, C. (2009). Flanker and Simon effects interact at the response selection stage. The Quarterly Journal of Experimental Psychology, 62, 1784–1804. https://doi.org/10.1080/17470210802557751 First citation in articleCrossrefGoogle Scholar

  • Wang, C., Ulbert, I., Schomer, D. L., Marinkovic, K. & Halgren, E. (2005). Responses of human anterior cingulate cortex microdomains to error detection, conflict monitoring, stimulus-response mapping, familiarity, and orienting. The Journal of Neuroscience, 25, 604–613. https://doi.org/10.1523/JNEUROSCI.4151-04.2005 First citation in articleCrossrefGoogle Scholar

  • Weissman, D. H., Jiang, J. & Egner, T. (2014). Determinants of congruency sequence effects without learning and memory confounds. Journal of Experimental Psychology: Human Perception and Performance, 40, 2022–2037. https://doi.org/10.1037/a0037454 First citation in articleCrossrefGoogle Scholar

  • Wendt, M., Kluwe, R. H. & Peters, A. (2006). Sequential modulations of interference evoked by processing task-irrelevant stimulus features. Journal of Experimental Psychology: Human Perception and Performance, 32, 644–667. https://doi.org/10.1037/0096-1523.32.3.644 First citation in articleCrossrefGoogle Scholar

  • Yeung, N., Botvinick, M. M. & Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111, 931–959. https://doi.org/10.1037/0033-295X.111.4.931 First citation in articleCrossrefGoogle Scholar