Skip to main content
Article

Anesthetists’ Heart Rate Variability as an Indicator of Performance During Induction of General Anesthesia and Simulated Critical Incidents

An Observational Study

Published Online:https://doi.org/10.1027/0269-8803/a000225

Abstract. In the environment of anesthesia, good performance describes the absence of threat for the patient as well as a quick reaction to challenging and possibly life-threatening circumstances. Elsewhere, performance and cognitive function have been linked to indicators of vagally-mediated heart rate variability (HRV). This exploratory study examines the correlation between anesthetists’ HRV and their performance during uneventful induction of general anesthesia and during a simulated critical incident. For this study electrocardiograms (ECG) were obtained from two different groups of anesthetists providing general anesthesia in uneventful real cases in the operation room (OR, n = 38) and during the management of a hypotension scenario in a high-fidelity human patient simulator environment (SIM, n = 23). Frequency, time domain, and nonlinear HRV metrics were calculated from 5-min ECG recordings. To separate high performing (HP) and low performing (LP) individuals, the time needed for induction (in the OR setting) and the length and depth of hypotension (in the SIM setting) were used as performance correlates. The Mann-Whitney-U-test was used to assess differences in HRV within the groups. In both settings (OR and SIM), linear and nonlinear HRV metrics did not differ significantly between the HP and LP group. Also, the anesthetists’ work experience and sex were not related to performance. While providing general anesthesia and during a simulated critical incident, high and low performing individuals do not differ with respect to HRV metrics, sex, and work experience. Further research including the HRV under resting conditions is necessary.

References

  • Arnsten, A. F. & Goldman-Rakic, P. S. (1998). Noise stress impairs prefrontal cortical cognitive function in monkeys: Evidence for a hyperdopaminergic mechanism. Archives of General Psychiatry, 55, 362–368. https://doi.org/10.1001/archpsyc.55.4.362 First citation in articleCrossrefGoogle Scholar

  • Beaumont, A., Burton, A. R., Lemon, J., Bennett, B. K., Lloyd, A. & Vollmer-Conna, U. (2012). Reduced cardiac vagal modulation impacts on cognitive performance in chronic fatigue syndrome. PLoS One, 7, e49518. https://doi.org/10.1371/journal.pone.0049518 First citation in articleCrossrefGoogle Scholar

  • Beh, H. C. (1990). Achievement motivation, performance and cardiovascular activity. International Journal of Psychophysiology, 10, 39–45. https://doi.org/10.1016/0167-8760(90)90043-D First citation in articleCrossrefGoogle Scholar

  • Billman, G. E. (2011). Heart rate variability – A historical perspective. Frontiers in Physiology, 86, 1–13. https://doi.org/10.3389/fphys.2011.00086 First citation in articleGoogle Scholar

  • Bolea, J., Pueyo, E., Laguna, P. & Bailon, R. (2014). Non-linear HRV indices under autonomic nervous system blockade. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2014, 3252–3255. https://doi.org/10.1109/EMBC.2014.6944316 First citation in articleGoogle Scholar

  • Brookings, J. B., Wilson, G. F. & Swain, C. R. (1996). Psychophysiological responses to changes in workload during simulated air traffic control. Biological Psychology, 42, 361–377. https://doi.org/10.1016/0301-0511(95)05167-8 First citation in articleCrossrefGoogle Scholar

  • Byrne, A. J., Murphy, A., McIntyre, O. & Tweed, N. (2013). The relationship between experience and mental workload in anaesthetic practice: An observational study. Anaesthesia, 68, 1266–1272. https://doi.org/10.1111/anae.12455 First citation in articleCrossrefGoogle Scholar

  • Cerasoli, C. P. & Ford, M. T. (2014). Intrinsic motivation, performance, and the mediating role of mastery goal orientation: A test of self-determination theory. Journal of Psychology, 148, 267–286. https://doi.org/10.1080/00223980.2013.783778 First citation in articleCrossrefGoogle Scholar

  • DeAnda, A. & Gaba, D. M. (1991). Role of experience in the response to simulated critical incidents. Anesthesia and Analgesia, 72, 308–315. First citation in articleCrossrefGoogle Scholar

  • Elliot, A. J. & Church, M. A. (1997). A hierarchical model of approach and avoidance achievement motivation. Journal of Personality and Social Psychology, 72, 218–232. https://doi.org/10.1037/0022-3514.72.1.218 First citation in articleCrossrefGoogle Scholar

  • Elliot, A. J., Payen, V., Brisswalter, J., Cury, F. & Thayer, J. F. (2011). A subtle threat cue, heart rate variability, and cognitive performance. Psychophysiology, 48, 1340–1345. https://doi.org/10.1111/j.1469-8986.2011.01216.x First citation in articleCrossrefGoogle Scholar

  • Hansen, A. L., Johnsen, B. H. & Thayer, J. F. (2003). Vagal influence on working memory and attention. International Journal of Psychophysiology, 48, 263–274. https://doi.org/10.1016/S0167-8760(03)00073-4 First citation in articleCrossrefGoogle Scholar

  • Hansen, A. L., Johnsen, B. H. & Thayer, J. F. (2009). Relationship between heart rate variability and cognitive function during threat of shock. Anxiety Stress & Coping, 22, 77–89. https://doi.org/10.1080/10615800802272251 First citation in articleCrossrefGoogle Scholar

  • Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). European Heart Journal, 17, 354–381. https://doi.org/10.1161/01.CIR.93.5.1043 First citation in articleCrossrefGoogle Scholar

  • Jorna, P. G. (1992). Spectral analysis of heart rate and psychological state: A review of its validity as a workload index. Biological Psychology, 34, 237–257. https://doi.org/10.1016/0301-0511(92)90017-O First citation in articleCrossrefGoogle Scholar

  • Jorna, P. G. (1993). Heart rate and workload variations in actual and simulated flight. Ergonomics, 36, 1043–1054. https://doi.org/10.1080/00140139308967976 First citation in articleCrossrefGoogle Scholar

  • Kaufmann, T., Sutterlin, S., Schulz, S. M. & Vogele, C. (2011). ARTiiFACT: A tool for heart rate artifact processing and heart rate variability analysis. Behavior Research Methods, 43, 1161–1170. https://doi.org/10.3758/s13428-011-0107-7 First citation in articleCrossrefGoogle Scholar

  • Kimhy, D., Crowley, O. V., McKinley, P. S., Burg, M. M., Lachman, M. E., Tun, P. A., … Sloan, R. P. (2013). The association of cardiac vagal control and executive functioning – findings from the MIDUS study. Journal of Psychiatric Research, 47, 628–635. https://doi.org/10.1016/j.jpsychires.2013.01.018 First citation in articleCrossrefGoogle Scholar

  • Laborde, S., Furley, P. & Schempp, C. (2015). The relationship between working memory, reinvestment, and heart rate variability. Physiology & Behavior, 139, 430–436. https://doi.org/10.1016/j.physbeh.2014.11.036 First citation in articleCrossrefGoogle Scholar

  • Laborde, S., Mosley, E. & Thayer, J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research – recommendations for experiment planning, data analysis, and data reporting. Frontiers in Psychology, 8, 213. https://doi.org/10.3389/fpsyg.2017.00213 First citation in articleCrossrefGoogle Scholar

  • Laborde, S., Raab, M. & Kinrade, N. P. (2014). Is the ability to keep your mind sharp under pressure reflected in your heart? Evidence for the neurophysiological bases of decision reinvestment. Biological Psychology, 100, 34–42. https://doi.org/10.1016/j.biopsycho.2014.05.003 First citation in articleCrossrefGoogle Scholar

  • Lahtinen, T. M., Koskelo, J. P., Laitinen, T. & Leino, T. K. (2007). Heart rate and performance during combat missions in a flight simulator. Aviation, Space, and Environmental Medicine, 78, 387–391. First citation in articleGoogle Scholar

  • Lindqvist, A., Keskinen, E., Antila, K., Halkola, L., Peltonen, T. & Valimaki, I. (1983). Heart rate variability, cardiac mechanics, and subjectively evaluated stress during simulator flight. Aviation, Space, and Environmental Medicine, 54, 685–690. First citation in articleGoogle Scholar

  • Livingston, S. A. & Rupp, S. L. (2004). Performance of men and women on multiple-choice and constructed-response tests for beginning teachers. ETS Research Report Series, 2004, 1–25. https://doi.org/10.1002/j.2333-8504.2004.tb01975.x First citation in articleCrossrefGoogle Scholar

  • Luque-Casado, A., Zabala, M., Morales, E., Mateo-March, M. & Sanabria, D. (2013). Cognitive performance and heart rate variability: The influence of fitness level. PLoS One, 8, e56935. https://doi.org/10.1371/journal.pone.0056935 First citation in articleCrossrefGoogle Scholar

  • Malliani, A., Pagani, M., Lombardi, F. & Cerutti, S. (1991). Cardiovascular neural regulation explored in the frequency domain. Circulation, 84, 482–492. https://doi.org/10.1161/01.CIR.84.2.482 First citation in articleCrossrefGoogle Scholar

  • Mansikka, H., Simola, P., Virtanen, K., Harris, D. & Oksama, L. (2016). Fighter pilots’ heart rate, heart rate variation and performance during instrument approaches. Ergonomics, 59, 1344–1352. https://doi.org/10.1080/00140139.2015.1136699 First citation in articleCrossrefGoogle Scholar

  • Martin, J., Schneider, F., Kowalewskij, A., Jordan, D., Hapfelmeier, A., Kochs, E. F., … Schulz, C. M. (2016). Linear and non-linear heart rate metrics for the assessment of anaesthetists’ workload during general anaesthesia. British Journal of Anaesthesia, 117, 767–774. https://doi.org/10.1093/bja/aew342 First citation in articleCrossrefGoogle Scholar

  • Mazzeo, J., Schmitt, A. P. & Bleistein, C. A. (1993). Sex-related performance differences on constructed-response and multiple-choice sections of advanced placement examinations. ETS Research Report Series, 1993, 1–29. https://doi.org/10.1002/j.2333-8504.1993.tb01516.x First citation in articleCrossrefGoogle Scholar

  • Porta, A., Gnecchi-Ruscone, T., Tobaldini, E., Guzzetti, S., Furlan, R. & Montano, N. (2007). Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. Journal of Applied Physiology, 103, 1143–1149. https://doi.org/10.1152/japplphysiol.00293.2007 First citation in articleCrossrefGoogle Scholar

  • Quińones, M. A., Ford, J. K. & Teachout, M. S. (1995). The relationship between work experience and job performance: A conceptual and meta-analytic review. Personnel Psychology, 48, 887–910. https://doi.org/10.1111/j.1744-6570.1995.tb01785.x First citation in articleCrossrefGoogle Scholar

  • Rimoldi, O., Pierini, S., Ferrari, A., Cerutti, S., Pagani, M. & Malliani, A. (1990). Analysis of short-term oscillations of R-R and arterial pressure in conscious dogs. American Journal of Physiology, 258, H967–H976. https://doi.org/10.1152/ajpheart.1990.258.4.H967 First citation in articleGoogle Scholar

  • Sassi, R., Cerutti, S., Lombardi, F., Malik, M., Huikuri, H. V., Peng, C. K., … Yamamoto, Y. (2015). Advances in heart rate variability signal analysis: Joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace, 17, 1341–1353. https://doi.org/10.1093/europace/euv015 First citation in articleCrossrefGoogle Scholar

  • Schneider, F., Martin, J., Hapfelmeier, A., Jordan, D., Schneider, G. & Schulz, C. M. (2017). The validity of linear and non-linear heart rate metrics as workload indicators of emergency physicians. PLos One, 12, e0188635. https://doi.org/10.1371/journal.pone.0188635 First citation in articleCrossrefGoogle Scholar

  • Schneider, G., Jordan, D., Schwarz, G., Bischoff, P., Kalkman, C. J., Kuppe, H., … Kochs, E. F. (2014). Monitoring depth of anesthesia utilizing a combination of electroencephalographic and standard measures. Anesthesiology, 120, 819–828. https://doi.org/10.1097/aln.0000000000000151 First citation in articleCrossrefGoogle Scholar

  • Schulz, C. M., Endsley, M. R., Kochs, E. F., Gelb, A. W. & Wagner, K. J. (2013). Situation awareness in anesthesia: Concept and research. Anesthesiology, 118, 729–742. https://doi.org/10.1097/ALN.0b013e318280a40f First citation in articleCrossrefGoogle Scholar

  • Schulz, C. M., Schneider, E., Fritz, L., Vockeroth, J., Hapfelmeier, A., Brandt, T., … Schneider, G. (2011). Visual attention of anaesthetists during simulated critical incidents. British Journal of Anaesthesia, 106, 807–813. https://doi.org/10.1093/bja/aer087 First citation in articleCrossrefGoogle Scholar

  • Schulz, C. M., Schneider, E., Kohlbecher, S., Hapfelmeier, A., Heuser, F., Wagner, K. J., … Schneider, G. (2014). The influence of anaesthetists’ experience on workload, performance and visual attention during simulated critical incidents. Journal of Clinical Monitoring and Computing, 28, 475–480. https://doi.org/10.1007/s10877-013-9443-8 First citation in articleCrossrefGoogle Scholar

  • Shahrestani, S., Stewart, E. M., Quintana, D. S., Hickie, I. B. & Guastella, A. J. (2015). Heart rate variability during adolescent and adult social interactions: A meta-analysis. Biological Psychology, 105, 43–50. https://doi.org/10.1016/j.biopsycho.2014.12.012 First citation in articleCrossrefGoogle Scholar

  • Stein, P. K., Domitrovich, P. P., Huikuri, H. V. & Kleiger, R. E. (2005). Traditional and nonlinear heart rate variability are each independently associated with mortality after myocardial infarction. Journal of Cardiovascular Electrophysiology, 16, 13–20. https://doi.org/10.1046/j.1540-8167.2005.04358.x First citation in articleCrossrefGoogle Scholar

  • Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-Aho, P. O. & Karjalainen, P. A. (2014). Kubios HRV – heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113, 210–220. https://doi.org/10.1016/j.cmpb.2013.07.024 First citation in articleCrossrefGoogle Scholar

  • Tattersall, A. J. & Hockey, G. R. (1995). Level of operator control and changes in heart rate variability during simulated flight maintenance. Human Factors, 37, 682–698. https://doi.org/10.1518/001872095778995517 First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., Hansen, A. L., Saus-Rose, E. & Johnsen, B. H. (2009). Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine, 37, 141–153. https://doi.org/10.1007/s12160-009-9101-z First citation in articleCrossrefGoogle Scholar

  • Veltman, J. A. & Gaillard, A. W. K. (1996). Physiological indices of workload in a simulated flight task. Biological Psychology, 42, 323–342. https://doi.org/10.1016/0301-0511(95)05165-1 First citation in articleCrossrefGoogle Scholar

  • Weinger, M. B., Herndon, O. W., Zornow, M. H., Paulus, M. P., Gaba, D. M. & Dallen, L. T. (1994). An objective methodology for task analysis and workload assessment in anesthesia providers. Anesthesiology, 80, 77–92. First citation in articleCrossrefGoogle Scholar

  • Wilson, G. F. (1992). Applied use of cardiac and respiration measures: Practical considerations and precautions. Biological Psychology, 34, 163–178. https://doi.org/10.1016/0301-0511(92)90014-L First citation in articleCrossrefGoogle Scholar