Skip to main content
Original Articles and Reviews

Efficacy of ICT-Based Neurocognitive Rehabilitation Programs for Acquired Brain Injury

A Systematic Review on Its Assessment Methods

Published Online:https://doi.org/10.1027/1016-9040/a000319

Abstract. This systematic review aims to analyze the methods used in the assessment of the efficacy of Neurocognitive Rehabilitation Programs (NRP) based on Information and Communication Technologies in patients with Acquired Brain Injury, namely platforms and online rehabilitation programs. Studies with the main purpose of evaluating the efficacy of those programs were retrieved from multiple literature databases, accordingly to inclusion and exclusion criteria. The inclusion and analysis of the studies followed preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) and Cochrane Collaboration Guidelines. Thirty-one studies were included in this review. Results showed that most studies used a pre-post methodological design, with few studies performing assessment moments during intervention or follow-up. Attention, memory, and executive functions were the cognitive variables considered by a larger number of studies at the assessment of NRP efficacy. Despite that, there is a growing evidence on the inclusion of variables related to everyday functioning in this process, increasing its ecological validity. Concerning the instruments used, the studies presented a large heterogeneity of the instruments and methods used, even for the same assessment purpose, highlighting a lack of consensus regarding assessment protocol. Psychophysiological and neuroimaging techniques are seldom used on this field. This review identifies the main characteristics of the methodology used at the assessment of NRP and potential limitations, providing useful information to guide the practice of the health care professionals in rehabilitation of Acquired Brain Injury. It also suggests new directions for future studies.

References

  • Akinwuntan, A. E., Devos, H., Verheyden, G., Baten, G., Kiekens, C., Feys, H. & De Weerdt, W. (2010). Retraining moderately impaired stroke survivors in driving-related visual attention skills. Topics in Stroke Rehabilitation, 17, 328–336. https://doi.org/10.1310/tsr1705-328 First citation in articleCrossrefGoogle Scholar

  • Andrews, G. (1999). Efficacy, effectiveness and efficiency in mental health service delivery. Australian and New Zealand Journal of Psychiatry, 33, 316–322. First citation in articleCrossrefGoogle Scholar

  • Aparicio-López, C., García-Molina, A., García-Fernández, J., López-Blázquez, R., Enseñat-Cantallops, A., Sánchez-Carrión, R., … Roig-Rovira, T. (2016). Combination treatment in the rehabilitation of visuo-spatial neglect. Tratamiento combinado en la rehabilitación de la negligencia visuoespacial., 28, 143–149. https://doi.org/10.7334/psicothema2015.937 First citation in articleGoogle Scholar

  • Bauer, R. M. (2007). Evidence-based practice in psychology: implications for research and research training. Journal of Clinical Psychology, 63, 685–694. https://doi.org/10.1002/jclp.20374 First citation in articleCrossrefGoogle Scholar

  • Beaumont, J. G., Connolly, S. A. V. & Rogers, M. J. C. (1999). Inpatient cognitive and behavioural rehabilitation: Assessing the outcomes. Neuropsychological Rehabilitation, 9, 401–411. First citation in articleCrossrefGoogle Scholar

  • Bergquist, T., Gehl, C., Mandrekar, J., Lepore, S., Hanna, S., Osten, A. & Beaulieu, W. (2009). The effect of internet-based cognitive rehabilitation in persons with memory impairments after severe traumatic brain injury. Brain Injury, 23, 790–799. https://doi.org/10.1080/02699050903196688 First citation in articleCrossrefGoogle Scholar

  • Bodagnova, Y., Yee, M. K., Ho, V. T. & Cicerone, K. D. (2015). Computerized cognitive rehabilitation of attention and executive function in Acquired Brain Injury: A systematic review. Journal of Head Trauma Rehabilitation, 31, 419–433. https://doi.org/10.1097/HTR.0000000000000203 First citation in articleGoogle Scholar

  • Caltagirone, C. & Zannino, G. D. (2008). Telecommunications technology in cognitive rehabilitation. Functional Neurology, 23, 195–199. First citation in articleGoogle Scholar

  • Carey, L. & Seitz, R. (2007). Functional neuroimaging in stroke recovery and neurorehabilitation: Conceptual issues and perspectives. International Journal of Stroke, 2, 245–264. First citation in articleCrossrefGoogle Scholar

  • Cernich, A. N., Kurtz, S. M., Mordecai, K. L. & Ryan, P. B. (2010). Cognitive rehabilitation in traumatic brain injury. Current Treatment Options in Neurology, 12, 412–423. https://doi.org/10.1007/s11940-010-0085-6 First citation in articleCrossrefGoogle Scholar

  • Chaytor, N. & Schmitter-Edgecombe, M. (2003). The ecological validity of neuropsychological tests: A review of the literature on everyday cognitive skills. Neuropsychology Review, 13, 181–197. https://doi.org/1040-7308/03/1200-0181/0 First citation in articleCrossrefGoogle Scholar

  • Cicerone, K. D., Dahlberg, C., Kalmar, K., Langenbahn, D., Malec, J., Bergquist, T., … Morse, P. (2000). Evidence-based cognitive rehabilitation: Recommendations for clinical practice. Archives of Physical and Medical Rehabilitation, 81, 1596–1615. https://doi.org/10.1053/apmr.2000.19240 First citation in articleCrossrefGoogle Scholar

  • Cicerone, K. D., Dahlberg, C., Malec, J. F., Langenbahn, D. M., Felicetti, S., Ellmo, W., … Catanese, J. (2005). Evidence-based cognitive rehabilitation: Updated review of the literature from 1998 through 2002. Archives of Physical and Medical Rehabilitation, 86, 1681–1692. https://doi.org/10.1016/j.apmr.2005.03.024 First citation in articleCrossrefGoogle Scholar

  • Cicerone, K. D., Langenbahn, D. M., Braden, C., Malec, J. F., Kalmar, K., Fraas, M., … Ashman, T. (2011). Evidence-based cognitive rehabilitation: Updated review of the literature from 2003 through 2008. Archives of Physical and Medical Rehabiliation, 92, 519–530. https://doi.org/10.1016/j.apmr.2010.11.015 First citation in articleCrossrefGoogle Scholar

  • Chen, H., Epstein, J. & Stern, E. (2010). Neuro plasticity after acquired brain injury: Evidence from functional neuroimaging. PM&R, 2, S306–S312. https://doi.org/10.1016/j.pmrj.2010.10.006 First citation in articleCrossrefGoogle Scholar

  • Cho, H., Kim, K. & Jung, J. (2015). Effects of computer assisted cognitive rehabilitation on brain wave, memory and attention of stroke patients: A randomized control trial. Journal of Physical Therapy Science, 27, 1029–1032. First citation in articleCrossrefGoogle Scholar

  • Cho, H., Kim, K. & Jung, J. (2016). Effects of neurofeedback and computer-assisted cognitive rehabilitation on relative brain wave ratios and activities of daily living of stroke patients: A randomized control trial. Journal of Physical Therapy Science, 28, 2154–2158. First citation in articleCrossrefGoogle Scholar

  • Claessen, M. H. G., van der Ham, I. J. M., Jagersma, E. & Visser-Meily, J. M. A. (2016). Navigation strategy training using virtual reality in six chronic stroke patients: A novel and explorative approach to the rehabilitation of navigation impairment. Neuropsychological Rehabilitation, 26, 822–846. https://doi.org/10.1080/09602011.2015.1045910 First citation in articleCrossrefGoogle Scholar

  • Cruz, V. T., Pais, J., Bento, V., Mateus, C., Colunas, M., Alves, I., … Rocha, N. (2013). A rehabilitation tool designed for intensive web-based cognitive training: Description and usability study. JMIR Research Protocols, 2, e59. https://doi.org/10.2196/resprot.2899 First citation in articleCrossrefGoogle Scholar

  • De Luca, R., Calabro, R. S., Gervasi, G., De Salvo, S., Bonanno, L., Corallo, F., … Bramanti, P. (2014). Is computer-assisted training effective in improving rehabilitative outcomes after brain injury? A case-control hospital-based study. Disability and Health Journal, 7, 356–360. https://doi.org/10.1016/j.dhjo.2014.04.003 First citation in articleCrossrefGoogle Scholar

  • Dores, A. R., Mendes, L., Carvalho, I. P., Guerreiro, S., Almeida, I. & Barbosa, F. (2016). Significance of virtual reality-based rehabilitation in acquired brain injury. In F. HuJ. LuT. ZhangEds., Virtual reality enhanced robotic systems for disability rehabilitation (pp. 164–180). Hershey, PA: Medical Information Science Reference. First citation in articleGoogle Scholar

  • Dou, Z. L., Man, D. W. K., Ou, H. N., Zheng, J. L. & Tam, S. F. (2006). Computerized errorless learning-based memory rehabilitation for Chinese patients with brain injury: A preliminary quasi-experimental clinical design study. Brain Injury, 20, 219–225. https://doi.org/10.1080/02699050500488215 First citation in articleCrossrefGoogle Scholar

  • Dymowski, A. R., Ponsford, J. L. & Willmott, C. (2015). Cognitive training approaches to remediate attention and executive dysfunction after traumatic brain injury: A single-case series. Neuropsychological Rehabilitation, 26, 866–894. https://doi.org/10.1080/09602011.2015.1102746 First citation in articleCrossrefGoogle Scholar

  • Entwistle, H. & Newby, G. (2013). The very basic basics: definitions, prevalence and consequences. In G. NewbyR. CoetzerA. DaisleyS. WeatherheadEds., Practical neuropsychological rehabilitation in acquired brain injury: A guide for working clinicians (pp. 3–11). London, UK: Karnac Books. First citation in articleGoogle Scholar

  • Feigin, V. L., Barker-Collo, S., Krishnamurthi, R., Theadom, A. & Starkey, N. (2010). Epidemiology of ischaemic stroke and traumatic brain injury. Best Practice & Research Clinical Anaesthesiology, 24, 485–494. https://doi.org/10.1016/j.bpa.2010.10.006 First citation in articleCrossrefGoogle Scholar

  • Fernández, E., Bringas, M. L., Salazar, S., Rodríguez, D., García, M. E. & Torres, M. (2012). Clinical impact of RehaCom software for cognitive rehabilitation of patients with acquired brain injury. MEDICC Review, 14, 32–35. First citation in articleCrossrefGoogle Scholar

  • Gamito, P., Oliveira, J., Coelho, C., Morais, D., Lopes, P., Pacheco, J., … Barata, A. F. (2017). Cognitive training on stroke patients via virtual reality-based serious games. Disability and Rehabilitation, 39, 385–388. https://doi.org/10.3109/09638288.2014.934925 First citation in articleCrossrefGoogle Scholar

  • Gamito, P., Oliveira, J., Pacheco, J., Morais, D., Saraiva, T., Lacerda, R., … Rosa, P. (2011). Traumatic brain injury memory training: A virtual reality online solution. International Journal on Disability and Human Development, 10, 309–312. https://doi.org/10.1515/IJDHD.2011.049 First citation in articleCrossrefGoogle Scholar

  • Gamito, P., Oliveira, J., Santos, N., Pacheco, J., Morais, D., Saraiva, T., … Barata, A. F. (2014). Virtual exercises to promote cognitive recovery in stroke patients: The comparison between head mounted displays versus screen exposure methods. International Journal on Disability and Human Development, 13, 337–342. https://doi.org/10.1515/ijdhd-2014-0325 First citation in articleCrossrefGoogle Scholar

  • Gartland, D. (2004). Considerations in the selection and use of technology with people who have cognitive deficits following acquired brain injury. Neuropsychological Rehabilitation, 14, 61–75. https://doi.org/10.1080/09602010343000165 First citation in articleCrossrefGoogle Scholar

  • Hauke, J., Fimm, B. & Sturm, W. (2011). Efficacy of alertness training in a case of brainstem encephalitis: Clinical and theoretical implications. Neuropsychological Rehabilitation, 21, 164–182. https://doi.org/10.1080/09602011.2010.541792 First citation in articleCrossrefGoogle Scholar

  • Higgins, J. & Green, S. (2011). Cochrane handbook for systematic reviews of interventions. (Version 5.1.0). Retrieved from http://handbook.cochrane.org. First citation in articleGoogle Scholar

  • Hynes, S. M., Fish, J. & Manly, T. (2014). Intensive working memory training: A single case experimental design in a patient following hypoxic brain damage. Brain Injury, 28, 1766–1775. https://doi.org/10.3109/02699052.2014.954622 First citation in articleCrossrefGoogle Scholar

  • Institute of Medicine (2001). Crossing the quality chasm: a new health system for the 21st century. Washington, DC: National Academies Press. First citation in articleGoogle Scholar

  • Jang, S. H., Jung, H. Y., Jang, D. H., Kim, Y. T., Seo, J. P. & Jang, W. H. (2013). The effect of a memory training application for a patient with traumatic brain injury. Journal of Physical Therapy Science, 25, 143–146. First citation in articleCrossrefGoogle Scholar

  • Johansson, B. & Tornmalm, M. (2012). Working memory training for patients with acquired brain injury: Effects in daily life. Scandinavian Journal of Occupational Therapy, 19, 176–183. https://doi.org/10.3109/11038128.2011.603352 First citation in articleCrossrefGoogle Scholar

  • Joseph, P., Mazaux, J. & Sorita, E. (2014). Virtual reality for cognitive rehabilitation: From new use of computers to better knowledge of brain black box? International Journal of Disability and Human Development, 13, 319–325. https://doi.org/10.1515/ijdhd-2014-0322 First citation in articleCrossrefGoogle Scholar

  • Kang, S. H., Kim, D. K., Seo, K. M., Choi, K. N., Yoo, J. Y., Sung, S. Y. & Park, H. J. (2009). A computerized visual perception rehabilitation programme with interactive computer interface using motion tracking technology – a randomized controlled, single-blinded, pilot clinical trial study. Clinical Rehabilitation, 23, 434–444. https://doi.org/10.1177/0269215508101732 First citation in articleCrossrefGoogle Scholar

  • Kim, Y. M., Chun, M. H., Yun, G. J., Song, Y. J. & Young, H. E. (2011). The effect of virtual reality training on unilateral spatial neglect in stroke patients. Annals of Rehabilitation Medicine, 35, 309–315. https://doi.org/10.5535/arm.2011.35.3.309 First citation in articleCrossrefGoogle Scholar

  • Landis, J. R. & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174. First citation in articleCrossrefGoogle Scholar

  • Lebowitz, M. S., Dams-O’Connor, K. & Cantor, J. B. (2012). Feasibility of computerized brain plasticity-based cognitive training after traumatic brain injury. Journal of Rehabilitation Research & Development, 49, 1547–1556. https://doi.org/10.1682/JRRD/2011.07.0133 First citation in articleCrossrefGoogle Scholar

  • Lezak, M., Howieson, D. & Loring, D. (2004). Neuropsychological assessment. New York, NY: Oxford University Press. First citation in articleGoogle Scholar

  • Lundqvist, A., Grundström, K., Samuelsson, K. & Rönnberg, J. (2010). Computerized training of working memory in a group of patients suffering from acquired brain injury. Brain Injury, 24, 1173–1183. https://doi.org/10.3109/02699052.2010.498007 First citation in articleCrossrefGoogle Scholar

  • Man, D. W. K., Soong, W. Y. L., Tam, S.-F. & Hui-Chan, C. W. Y. (2006a). Development and evaluation of a pictorial-based analogical problem-solving programme for people with traumatic brain injury. Brain Injury, 20, 981–990. https://doi.org/10.1080/13561820600909852 First citation in articleCrossrefGoogle Scholar

  • Man, D. W. K., Soong, W. Y. L., Tam, S.-F. & Hui-Chan, C. W. Y. (2006b). A randomized clinical trial study on the effectiveness of a tele-analogy-based problem-solving programme for people with acquired brain injury (ABI). NeuroRehabilitation, 21, 205–217. First citation in articleGoogle Scholar

  • Musiat, P. & Tarrier, N. (2014). Collateral outcomes in e-mental health: A systematic review of the evidence for added benefits of computerized cognitive behavior therapy interventions for mental health. Psychological Medicine, 44, 3137–3150. https://doi.org/10.1017/S0033291714000245 First citation in articleCrossrefGoogle Scholar

  • Park, J. H. & Park, J. H. (2015). The effects of a Korean computer-based cognitive rehabilitation program on cognitive function and visual perception ability of patients with acute stroke. Journal of Physical Therapy Science, 27, 2577–2579. First citation in articleCrossrefGoogle Scholar

  • Park, S. H., Koh, E. J., Choi, H. Y. & Ko, M. H. (2013). A double-blind, sham-controlled, pilot study to assess the effects of the concomitant use of transcranial direct current stimulation with the computer assisted cognitive rehabilitation to the prefrontal cortex on cognitive functions in patients with stroke. Journal of Korean Neurosurgical Society, 54, 484–488. https://doi.org/10.3340/jkns.2013.54.6.484 First citation in articleGoogle Scholar

  • Prokopenko, S. V., Mozheyko, E. Y., Petrova, M. M., Koryagina, T. D., Kaskaeva, D. S., Chernykh, T. V., … Bezdenezhnih, A. F. (2013). Correction of post-stroke cognitive impairments using computer programs. Journal of the Neurological Sciences, 325, 148–153. https://doi.org/10.1016/j.jns.2012.12.024 First citation in articleCrossrefGoogle Scholar

  • Rees, L., Marshall, S., Hartridge, C., Mackie, D. & Weiser, M. (2007). Cognitive interventions post acquired brain injury. Brain Injury, 21, 161–200. https://doi.org/10.1080/02699050701201813 First citation in articleCrossrefGoogle Scholar

  • Rossi, P. (2006). Medicine in the internet age. The rise of the network society. Functional Neurology, 21, 9–13. First citation in articleGoogle Scholar

  • Sacket, D. L., Rosenberg, W. M., Gray, J. A. M., Haynes, R. B. & Richardson, W. S. (1996). Evidence-based medicine: What it is and what it isn’t. British Medical Journal, 312, 71–72. First citation in articleCrossrefGoogle Scholar

  • Satish, U., Streufert, S. & Eslinger, P. J. (2008). Simulation-based executive cognitive assessment and rehabilitation after traumatic frontal lobe injury: A case report. Disability & Rehabilitation, 30, 468–478. https://doi.org/10.1080/09638280701625401 First citation in articleCrossrefGoogle Scholar

  • Schoenberg, M. R., Ruwe, W. D., Dawson, K., McDonald, N. B., Houston, B. & Forducey, P. G. (2008). Comparison of functional outcomes and treatment cost between a computer-based cognitive rehabilitation teletherapy program and a face-to-face rehabilitation program. Professional Psychology: Research and Practice, 39, 169–175. https://doi.org/10.1037/0735-7028.39.2.169 First citation in articleCrossrefGoogle Scholar

  • Shamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., … Stewart, L. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. British Medical Journal, 349, g7647. https://doi.org/10.1136/bmj.g7647 First citation in articleCrossrefGoogle Scholar

  • Stathopoulou, S. & Lubar, J. (2004). EEG changes in traumatic brain injured patients after cognitive rehabilitation. Journal of Neurotherapy, 8, 21–51. https://doi.org/10.1300/J184v08n02_03 First citation in articleCrossrefGoogle Scholar

  • Tagliaferri, F., Compagnone, C., Korsic, M., Servadei, F. & Kraus, J. (2006). A systematic review of brain injury epidemiology in Europe. Acta Neurochirurgica, 148, 255–268.discussion 268. https://doi.org/10.1007/s00701-005-0651-y. First citation in articleCrossrefGoogle Scholar

  • Thornton, K. & Carmody, D. (2005). Eletroencephalogram biofeedback for reading disability and traumatic brain injury. Child and Adolescent Psychiatric Clinics of North America, 14, 137–162. https://doi.org/10.1016/j.chc.2004.07.001 First citation in articleCrossrefGoogle Scholar

  • Truelle, J. L., Fayol, P., Montreuil, M. & Chevignard, M. (2010). Community integration after severe traumatic brain injury in adults. Current Opinion in Neurology, 23, 688–694. https://doi.org/10.1097/WCO.0b013e3283404258 First citation in articleCrossrefGoogle Scholar

  • Vakili, A. & Langdon, R. (2016). Cognitive rehabilitation of attention deficits in traumatic brain injury using action video games: A controlled trial. Cogent Psychology, 3, 1–13. https://doi.org/10.1080/23311908.2016.1143732 First citation in articleCrossrefGoogle Scholar

  • van Heughten, C., Gregório, G. W. & Wade, D. (2012). Evidence-based cognitive rehabilitation after acquired brain injury: A systematic review of content of treatment. Neuropsychological Rehabilitation, 22, 653–673. https://doi.org/10.1080/09602011.2012.680891 First citation in articleCrossrefGoogle Scholar

  • Victora, C. G., Habitch, J. P. & Bryce, J. (2004). Evidence-based public health: Moving beyond randomized trials. American Journal of Public Health, 94, 400–405. First citation in articleCrossrefGoogle Scholar

  • Virk, S., Williams, T., Brunsdon, R., Suh, F. & Morrow, A. (2015). Cognitive remediation of attention deficits following acquired brain injury: A systematic review and meta-analysis. NeuroRehabilitation, 36, 367–377. https://doi.org/10.3233/NRE-151225 First citation in articleCrossrefGoogle Scholar

  • Westerberg, H., Jacobaeus, H., Hirvikoski, T., Clevberger, P., Ostensson, M. L., Bartfai, A. & Klingberg, T. (2007). Computerized working memory training after stroke – a pilot study. Brain Injury, 21, 21–29. https://doi.org/10.1080/02699050601148726 First citation in articleCrossrefGoogle Scholar

  • WHO, World Health Organization. (1996). The world health report 1996: Fighting disease, fostering development. Retrieved from http://www.who.int/entity/whr/1996/en/whr96_en.pdf?ua=1. First citation in articleGoogle Scholar

  • Yip, B. C. B. & Man, D. W. K. (2013). Virtual reality-based prospective memory training program for people with acquired brain injury. NeuroRehabilitation, 32, 103–115. https://doi.org/10.3233/NRE-130827 First citation in articleCrossrefGoogle Scholar

  • Yoo, C., Yong, M. H., Chung, J. & Yang, Y. (2015). Effect of computerized cognitive rehabilitation program on cognitive function and activities of living in stroke patients. Journal of Physical Therapy Science, 27, 2487–2489. First citation in articleCrossrefGoogle Scholar