Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dissociating conscious and unconscious influences on visual detection effects

Subjects

Abstract

The scope of unconscious processing is highly debated, with recent studies showing that even high-level functions such as perceptual integration and category-based attention occur unconsciously. For example, upright faces that are suppressed from awareness through interocular suppression break into awareness more quickly than inverted faces. Similarly, verbal object cues boost otherwise invisible objects into awareness. Here, we replicate these findings, but find that they reflect a general difference in detectability not specific to interocular suppression. To dissociate conscious and unconscious influences on visual detection effects, we use an additional discrimination task to rule out conscious processes as a cause for these differences. Results from this detection–discrimination dissociation paradigm reveal that, while face orientation is processed unconsciously, category-based attention requires awareness. These findings provide insights into the function of conscious perception and offer an experimental approach for mapping out the scope and limits of unconscious processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experiment 1, comparing b-CFS with three other detection paradigms.
Fig. 2: Experiment 2, comparing b-CFS with two other detection paradigms.
Fig. 3: Dissociating conscious and unconscious contributions to detection effects.
Fig. 4: Experiment 3, testing unconscious processing of face orientation with the detection–discrimination dissociation approach.
Fig. 5: Experiment 4, testing the influence of category-based attention on conscious versus unconscious processing.

Similar content being viewed by others

Data availability

Data from individual participants that formed the basis of the findings of this study are available at https://osf.io/sn8cr/.

Code availability

Custom code that was used to extract individual participant results is available at https://osf.io/sn8cr/. Additional code is available from the corresponding author upon request.

References

  1. Cohen, M. A. & Dennett, D. C. Consciousness cannot be separated from function. Trends Cogn. Sci. 15, 358–364 (2011).

    Article  PubMed  Google Scholar 

  2. Baars, B. J. Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Prog. Brain Res. 150, 45–53 (2005).

    Article  PubMed  Google Scholar 

  3. Dehaene, S. & Naccache, L. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79, 1–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Kanai, R. et al. Information generation as a functional basis of consciousness. Neurosci. Conscious. 2019, niz016 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Baars, B. J. A Cognitive Theory of Consciousness (Cambridge Univ. Press, 1988).

  6. Kanwisher, N. Neural events and perceptual awareness. Cognition 79, 89–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Hassin, R. R. Yes it can: on the functional abilities of the human unconscious. Perspect. Psychol. Sci. 8, 195–207 (2013).

    Article  PubMed  Google Scholar 

  8. Mudrik, L., Faivre, N. & Koch, C. Information integration without awareness. Trends Cogn. Sci. 18, 488–496 (2014).

    Article  PubMed  Google Scholar 

  9. Koch, C. & Tsuchiya, N. Attention and consciousness: two distinct brain processes. Trends Cogn. Sci. 11, 16–22 (2007).

    Article  PubMed  Google Scholar 

  10. Soto, D. & Silvanto, J. Reappraising the relationship between working memory and conscious awareness. Trends Cogn. Sci. 18, 520–525 (2014).

    Article  PubMed  Google Scholar 

  11. Van Gaal, S. & Lamme, V. A. F. Unconscious high-level information processing: implication for neurobiological theories of consciousness. Neuroscientist 18, 287–301 (2012).

    Article  PubMed  Google Scholar 

  12. Hesselmann, G. & Moors, P. Definitely maybe: can unconscious processes perform the same functions as conscious processes? Front. Psychol. 6, 584 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schmidt, T. Invisible stimuli, implicit thresholds: why invisibility judgments cannot be interpreted in isolation. Adv. Cogn. Psychol. 11, 31–41 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Newell, B. R. & Shanks, D. R. Unconscious influences on decision making: a critical review. Behav. Brain Sci. 37, 1–19 (2014).

    Article  PubMed  Google Scholar 

  15. Holender, D. Semantic activation without conscious identification in dichotic listening, parafoveal vision, and visual masking: a survey and appraisal. Behav. Brain Sci. 9, 1–23 (1986).

    Article  Google Scholar 

  16. Gayet, S., Van Der Stigchel, S. & Paffen, C. L. E. Breaking continuous flash suppression: competing for consciousness on the pre-semantic battlefield. Front. Psychol. 5, 460 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang, E., Brascamp, J., Kang, M. S. & Blake, R. On the use of continuous flash suppression for the study of visual processing outside of awareness. Front. Psychol. 5, 724 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jiang, Y., Costello, P. & He, S. Processing of invisible stimuli: advantage of upright faces and recognizable words in overcoming interocular suppression. Psychol. Sci. 18, 349–355 (2007).

    Article  PubMed  Google Scholar 

  19. Stein, T. & Sterzer, P. Unconscious processing under interocular suppression: getting the right measure. Front. Psychol. 5, 387 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stein, T., Hebart, M. N. & Sterzer, P. Breaking continuous flash suppression: a new measure of unconscious processing during interocular suppression? Front. Hum. Neurosci. 5, 167 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stein, T. in Transitions between Consciousness and Unconsciousness (ed. Hesselmann, G.) 1–38 (Routledge, 2019).

  22. Tsuchiya, N. & Koch, C. Continuous flash suppression reduces negative afterimages. Nat. Neurosci. 8, 1096–1101 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Axelrod, V., Bar, M. & Rees, G. Exploring the unconscious using faces. Trends Cogn. Sci. 19, P35–P45 (2015).

    Article  Google Scholar 

  24. Abir, Y., Sklar, A. Y., Dotsch, R., Todorov, A. & Hassin, R. R. The determinants of consciousness of human faces. Nat. Hum. Behav. 2, 194–199 (2018).

    Article  Google Scholar 

  25. Stewart, L. H. et al. Unconscious evaluation of faces on social dimensions. J. Exp. Psychol. Gen. 141, 715–727 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schmack, K., Burk, J., Haynes, J. D. & Sterzer, P. Predicting subjective affective salience from cortical responses to invisible object stimuli. Cereb. Cortex 26, 3453–3460 (2016).

    Article  PubMed  Google Scholar 

  27. Gayet, S., Paffen, C. L. E., Belopolsky, A. V., Theeuwes, J. & Van der Stigchel, S. Visual input signaling threat gains preferential access to awareness in a breaking continuous flash suppression paradigm. Cognition 149, 77–83 (2016).

    Article  PubMed  Google Scholar 

  28. Yang, E., Zald, D. H. & Blake, R. Fearful expressions gain preferential access to awareness during continuous flash suppression. Emotion 7, 882–886 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang, L., Weng, X. & He, S. Perceptual grouping without awareness: superiority of Kanizsa triangle in breaking interocular suppression. PLoS ONE 7, e40106 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moors, P., Wagemans, J. & De-Wit, L. Causal events enter awareness faster than non-causal events. PeerJ 2017, e2932 (2017).

    Article  Google Scholar 

  31. Hung, S. M., Styles, S. J. & Hsieh, P. J. Can a word sound like a shape before you have seen it? Sound–shape mapping prior to conscious awareness. Psychol. Sci. 28, 263–275 (2017).

    Article  PubMed  Google Scholar 

  32. Stein, T., Kaiser, D. & Peelen, M. V. Interobject grouping facilitates visual awareness. J. Vis. 15, 10 (2015).

    Article  PubMed  Google Scholar 

  33. Alsius, A. & Munhall, K. G. Detection of audiovisual speech correspondences without visual awareness. Psychol. Sci. 24, 423–431 (2013).

    Article  PubMed  Google Scholar 

  34. Tan, J. S. & Yeh, S. L. Audiovisual integration facilitates unconscious visual scene processing. J. Exp. Psychol. Hum. Percept. Perform. 41, 1325–1335 (2015).

    Article  PubMed  Google Scholar 

  35. Zhou, W., Jiang, Y., He, S. & Chen, D. Olfaction modulates visual perception in binocular rivalry. Curr. Biol. 20, 1356–1358 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, P., Jiang, Y. & He, S. Voluntary attention modulates processing of eye-specific visual information. Psychol. Sci. 23, 254–260 (2012).

    Article  PubMed  Google Scholar 

  37. Stein, T. & Peelen, M. V. Content-specific expectations enhance stimulus detectability by increasing perceptual sensitivity. J. Exp. Psychol. Gen. 144, 1089–1104 (2015).

    Article  PubMed  Google Scholar 

  38. Pinto, Y., van Gaal, S., de Lange, F. P., Lamme, V. A. F. & Seth, A. K. Expectations accelerate entry of visual stimuli into awareness. J. Vis. 15, 13 (2015).

    Article  PubMed  Google Scholar 

  39. Gayet, S., Paffen, C. L. E. & Van der Stigchel, S. Information matching the content of visual working memory is prioritized for conscious access. Psychol. Sci. 24, 2472–2480 (2013).

    Article  PubMed  Google Scholar 

  40. Pan, Y., Lin, B., Zhao, Y. & Soto, D. Working memory biasing of visual perception without awareness. Atten. Percept. Psychophys. 76, 2051–2062 (2014).

    Article  PubMed  Google Scholar 

  41. Hung, S. M. & Hsieh, P. J. Syntactic processing in the absence of awareness and semantics. J. Exp. Psychol. Hum. Percept. Perform. 41, 1376–1384 (2015).

    Article  PubMed  Google Scholar 

  42. Yang, Y. H. & Yeh, S. L. Accessing the meaning of invisible words. Conscious. Cogn. 20, 223–233 (2011).

    Article  PubMed  Google Scholar 

  43. Costello, P., Jiang, Y., Baartman, B., McGlennen, K. & He, S. Semantic and subword priming during binocular suppression. Conscious. Cogn. 18, 375–382 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lupyan, G. & Ward, E. J. Language can boost otherwise unseen objects into visual awareness. Proc. Natl Acad. Sci. U. S. A. 110, 14196–14201 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ostarek, M. & Huettig, F. Spoken words can make the invisible visible–testing the involvement of low-level visual representations in spoken word processing. J. Exp. Psychol. Hum. Percept. Perform. 43, 499–508 (2017).

    Article  PubMed  Google Scholar 

  46. Sklar, A. Y. et al. Reading and doing arithmetic nonconsciously. Proc. Natl Acad. Sci. U. S. A. 109, 19614–19619 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stein, T., Sterzer, P. & Peelen, M. V. Privileged detection of conspecifics: evidence from inversion effects during continuous flash suppression. Cognition 125, 64–79 (2012).

    Article  PubMed  Google Scholar 

  48. Zhou, G., Zhang, L., Liu, J., Yang, J. & Qu, Z. Specificity of face processing without awareness. Conscious. Cogn. 19, 408–412 (2010).

    Article  PubMed  Google Scholar 

  49. Sterzer, P., Stein, T., Ludwig, K., Rothkirch, M. & Hesselmann, G. Neural processing of visual information under interocular suppression: a critical review. Front. Psychol. 5, 453 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sklar, A. Y., Deouell, L. Y. & Hassin, R. R. Integration despite fractionation: continuous flash suppression. Trends Cogn. Sci. 22, 956–957 (2018).

    Article  PubMed  Google Scholar 

  51. Moors, P., Hesselmann, G., Wagemans, J. & van Ee, R. Continuous flash suppression: stimulus fractionation rather than integration. Trends Cogn. Sci. 21, 719–721 (2017).

    Article  PubMed  Google Scholar 

  52. Moors, P. et al. Three criteria for evaluating high-level processing in continuous flash suppression. Trends Cogn. Sci. 23, 267–269 (2019).

    Article  PubMed  Google Scholar 

  53. Sterzer, P., Jalkanen, L. & Rees, G. Electromagnetic responses to invisible face stimuli during binocular suppression. Neuroimage 46, 803–808 (2009).

    Article  PubMed  Google Scholar 

  54. Suzuki, M. & Noguchi, Y. Reversal of the face-inversion effect in N170 under unconscious visual processing. Neuropsychologia 51, 400–409 (2013).

    Article  PubMed  Google Scholar 

  55. Schlossmacher, I., Junghöfer, M., Straube, T. & Bruchmann, M. No differential effects to facial expressions under continuous flash suppression: an event-related potentials study. NeuroImage 163, 276–285 (2017).

    Article  PubMed  Google Scholar 

  56. Moradi, F., Koch, C. & Shimojo, S. Face adaptation depends on seeing the face. Neuron 45, 169–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Amihai, I., Deouell, L. & Bentin, S. Conscious awareness is necessary for processing race and gender information from faces. Conscious. Cogn. 20, 269–279 (2011).

    Article  PubMed  Google Scholar 

  58. Stein, T. & Sterzer, P. High-level face shape adaptation depends on visual awareness: evidence from continuous flash suppression. J. Vis. 11, 5 (2011).

    Article  PubMed  Google Scholar 

  59. Nieuwenhuis, S. & de Kleijn, R. Consciousness of targets during the attentional blink: a gradual or all-or-none dimension? Atten. Percept. Psychophys. 73, 364–373 (2011).

    Article  PubMed  Google Scholar 

  60. Overgaard, M., Rote, J., Mouridsen, K. & Ramsøy, T. Z. Is conscious perception gradual or dichotomous? A comparison of report methodologies during a visual task. Conscious. Cogn. 15, 700–708 (2006).

    Article  PubMed  Google Scholar 

  61. Gayet, S., van Maanen, L., Heilbron, M., Paffen, C. L. E. & Van der Stigchel, S. Visual input that matches the content of visual working memory requires less (not faster) evidence sampling to reach conscious access. J. Vis. 16, 26 (2016).

    Article  PubMed  Google Scholar 

  62. Shapiro, K. L., Arnell, K. M. & Raymond, J. E. The attentional blink. Trends Cogn. Sci. 1, 291–296 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Dehaene, S., Changeux, J. P., Naccache, L., Sackur, J. & Sergent, C. Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn. Sci. 10, 204–211 (2006).

    Article  PubMed  Google Scholar 

  64. Breitmeyer, B. G. Psychophysical ‘blinding’ methods reveal a functional hierarchy of unconscious visual processing. Conscious. Cogn. 35, 234–250 (2015).

    Article  PubMed  Google Scholar 

  65. Stein, T., Peelen, M. V. & Sterzer, P. Adults’ awareness of faces follows newborns’ looking preferences. PLoS ONE 6, e29361 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schmidt, T. & Vorberg, D. Criteria for unconscious cognition: three types of dissociation. Percept. Psychophys. 68, 489–504 (2006).

    Article  PubMed  Google Scholar 

  67. Reingold, E. M. & Merikle, P. M. Using direct and indirect measures to study perception without awareness. Percept. Psychophys. 44, 563–575 (1988).

    Article  CAS  PubMed  Google Scholar 

  68. Vorberg, D., Mattler, U., Heinecke, A., Schmidt, T. & Schwarzbach, J. Different time courses for visual perception and action priming. Proc. Natl Acad. Sci. U. S. A. 100, 6275–6280 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schmidt, T. The finger in flight: real-time motor control by visually masked color stimuli. Psychol. Sci. 13, 112–118 (2002).

    Article  PubMed  Google Scholar 

  70. Ludwig, K., Sterzer, P., Kathmann, N., Franz, V. H. & Hesselmann, G. Learning to detect but not to grasp suppressed visual stimuli. Neuropsychologia 51, 2930–2938 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Mastropasqua, T., Tse, P. U. & Turatto, M. Learning of monocular information facilitates breakthrough to awareness during interocular suppression. Atten. Percept. Psychophys. 77, 790–803 (2015).

    Article  PubMed  Google Scholar 

  72. Gayet, S. & Stein, T. Between-subject variability in the breaking continuous flash suppression paradigm: potential causes, consequences, and solutions. Front. Psychol. 8, 437 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Paffen, C. L. E., Gayet, S., Heilbron, M. & Van der Stigchel, S. Attention-based perceptual learning does not affect access to awareness. J. Vis. 18, 1–16 (2018).

    Article  Google Scholar 

  74. Ramsøy, T. Z. & Overgaard, M. Introspection and subliminal perception. Phenomenol. Cogn. Sci. 3, 1–23 (2004).

    Article  Google Scholar 

  75. Franz, V. H. & von Luxburg, U. No evidence for unconscious lie detection: a significant difference does not imply accurate classification. Psychol. Sci. 26, 1646–1648 (2015).

    Article  PubMed  Google Scholar 

  76. Battistoni, E., Stein, T. & Peelen, M. V. Preparatory attention in visual cortex. Ann. N. Y. Acad. Sci. 1396, 92–107 (2017).

    Article  PubMed  Google Scholar 

  77. Gayet, S. et al. No evidence for mnemonic modulation of interocularly suppressed visual input. Neuroimage 215, 116801 (2020).

    Article  PubMed  Google Scholar 

  78. Fahrenfort, J. J. et al. Neuronal integration in visual cortex elevates face category tuning to conscious face perception. Proc. Natl Acad. Sci. U. S. A. 109, 21504–21509 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lamme, V. A. F. & Roelfsema, P. R. The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci. 23, 571–579 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Fahrenfort, J. J., Scholte, H. S. & Lamme, V. A. F. Masking disrupts reentrant processing in human visual cortex. J. Cogn. Neurosci. 19, 1488–1497 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Yuval-Greenberg, S. & Heeger, D. J. Continuous flash suppression modulates cortical activity in early visual cortex. J. Neurosci. 33, 9635–9643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Crouzet, S. M., Kirchner, H. & Thorpe, S. J. Fast saccades toward faces: face detection in just 100 ms. J. Vis. 10, 16 (2010).

    Article  PubMed  Google Scholar 

  83. Fahrenfort, J. J., Van Leeuwen, J., Olivers, C. N. L. & Hogendoorn, H. Perceptual integration without conscious access. Proc. Natl Acad. Sci. U. S. A. 114, 3744–3749 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Moors, P., Boelens, D., van Overwalle, J. & Wagemans, J. Scene integration without awareness: no conclusive evidence for processing scene congruency during continuous flash suppression. Psychol. Sci. 27, 945–956 (2016).

    Article  PubMed  Google Scholar 

  85. Stein, T., Reeder, R. R. & Peelen, M. V. Privileged access to awareness for faces and objects of expertise. J. Exp. Psychol. Hum. Percept. Perform. 42, 788–798 (2016).

    Article  PubMed  Google Scholar 

  86. Kaiser, D., Quek, G. L., Cichy, R. M. & Peelen, M. V. Object vision in a structured world. Trends Cogn. Sci. 23, 672–685 (2019).

    Article  PubMed  Google Scholar 

  87. Lamme, V. A. F. Why visual attention and awareness are different. Trends Cogn. Sci. 7, 12–18 (2003).

    Article  PubMed  Google Scholar 

  88. de Lange, F. P., Heilbron, M. & Kok, P. How do expectations shape perception? Trends Cogn. Sci. 22, 764–779 (2018).

    Article  PubMed  Google Scholar 

  89. Summerfield, C. & Egner, T. Expectation (and attention) in visual cognition. Trends Cogn. Sci. 13, 403–409 (2009).

    Article  PubMed  Google Scholar 

  90. Kouider, S., de Gardelle, V., Sackur, J. & Dupoux, E. How rich is consciousness? The partial awareness hypothesis. Trends Cogn. Sci. 14, 301–307 (2010).

    Article  PubMed  Google Scholar 

  91. Cohen, M. A., Cavanagh, P., Chun, M. M. & Nakayama, K. The attentional requirements of consciousness. Trends Cogn. Sci. 16, 411–417 (2012).

    Article  PubMed  Google Scholar 

  92. Bahrami, B., Lavie, N. & Rees, G. Attentional load modulates responses of human primary visual cortex to invisible stimuli. Curr. Biol. 17, 509–513 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Van Boxtel, J. J. A., Tsuchiya, N. & Koch, C. Opposing effects of attention and consciousness on afterimages. Proc. Natl Acad. Sci. U. S. A. 107, 8883–8888 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bahrami, B., Carmel, D., Walsh, V., Rees, G. & Lavie, N. Unconscious orientation processing depends on perceptual load. J. Vis. 8, 12 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Naccache, L., Blandin, E. & Dehaene, S. Unconscious masked priming depends on temporal attention. Psychol. Sci. 13, 416–424 (2002).

    Article  PubMed  Google Scholar 

  96. Bahrami, B., Carmel, D., Walsh, V., Rees, G. & Lavie, N. Spatial attention can modulate unconscious orientation processing. Perception 37, 1520–1528 (2008).

    Article  PubMed  Google Scholar 

  97. Wyart, V. & Tallon-Baudry, C. Neural dissociation between visual awareness and spatial attention. J. Neurosci. 28, 2667–2679 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kanai, R., Tsuchiya, N. & Verstraten, F. A. J. The scope and limits of top-down attention in unconscious visual processing. Curr. Biol. 16, 2332–2336 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Watanabe, M. et al. Attention but not awareness modulates the BOLD signal in the human V1 during binocular suppression. Science 334, 829–831 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Chelazzi, L., Miller, E. K., Duncan, J. & Desimone, R. A neural basis for visual search in inferior temporal cortex. Nature 363, 345–347 (1993).

    Article  CAS  PubMed  Google Scholar 

  101. Bansal, A. K. et al. Neural dynamics underlying target detection in the human brain. J. Neurosci. 34, 3042–3055 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Graziano, M. S. A. & Webb, T. W. The attention schema theory: a mechanistic account of subjective awareness. Front. Psychol. 6, 500 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Peters, M. A. K. & Lau, H. Human observers have optimal introspective access to perceptual processes even for visually masked stimuli. Elife 4, e09651 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Vadillo, M. A., Linssen, D., Orgaz, C., Parsons, S. & Shanks, D. R. Unconscious or underpowered? Probabilistic cuing of visual attention. J. Exp. Psychol. Gen. 149, 160–181 (2020).

    Article  PubMed  Google Scholar 

  106. Vadillo, M. A., Konstantinidis, E. & Shanks, D. R. Underpowered samples, false negatives, and unconscious learning. Psychon. Bull. Rev. 23, 87–102 (2016).

    Article  PubMed  Google Scholar 

  107. Shanks, D. R. Regressive research: the pitfalls of post hoc data selection in the study of unconscious mental processes. Psychon. Bull. Rev. 24, 752–775 (2017).

    Article  PubMed  Google Scholar 

  108. Dienes, Z. in Behavioral Methods in Consciousness Research (ed. Overgaard, M.) 199–220 (Oxford Academic, 2015).

  109. Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).

    Article  CAS  Google Scholar 

  110. Lundqvist, D., Flykt, A., Öhman, A. The Karolinska directed emotional faces - KDEF, CD ROM from Department of Clinical Neuroscience, Psychology Section. Karolinska Institutet ISBN 91-630-7164-9.

  111. Kelley, K. MBESS, version 4.0.0 and higher (2017).

  112. Kelley, K. Confidence intervals for standardized effect sizes: theory, application, and implementation. J. Stat. Softw. https://doi.org/10.18637/jss.v020.i08 (2007).

  113. Miles, W. R. Ocular dominance in human adults. J. Gen. Psychol. 3, 412–430 (1930).

    Article  Google Scholar 

  114. Rabovsky, M., Stein, T. & Abdel Rahman, R. Access to awareness for faces during continuous flash suppression is not modulated by affective knowledge. PLoS ONE 11, e0150931 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Stein, T., Siebold, A. & Van Zoest, W. Testing the idea of privileged awareness of self-relevant information. J. Exp. Psychol. Hum. Percept. Perform. 42, 303–307 (2016).

    Article  PubMed  Google Scholar 

  116. Yang, E., Blake, R. & McDonald, J. E. A new interocular suppression technique for measuring sensory eye dominance. Investig. Ophthalmol. Vis. Sci. 51, 588–593 (2010).

    Article  Google Scholar 

  117. Macmillan, N. A. & Creelman, C. D. Detection Theory: A User’s Guide (Lawrence Erlbaum, 2005).

  118. JASP Team. J ASP (version 0.12.2) (2020).

Download references

Acknowledgements

The authors thank S. Gayet and Y. Pinto for suggestions on earlier versions of this manuscript, and D. Awad, T. Ciorli, C. Laurent, M. Leitjens, C. Riddell, F. Roelofs and M. Wiggers for help with data collection. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 725970). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T.S. and M.V.P. designed the study, interpreted the data and drafted the paper. T.S. analysed the data.

Corresponding author

Correspondence to Timo Stein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Human Behaviour thanks Anthony Atkinson, Stefan Van der Stigchel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. The editors also thank Sheng He for providing signed comments.

Primary Handling Editor: Marike Schiffer.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Subject-level display of localization thresholds in Experiment 1.

Localization thresholds for low- and high-contrast upright and inverted faces from the four detection paradigms. Note the different scales. Every circles represents an individual participant.

Extended Data Fig. 2 Subject-level display of localization accuracy in Experiment 2.

Localization for accuracy for upright and inverted faces for the three different detection paradigms and presentation times. Every circles represents an individual participant.

Extended Data Fig. 3 Subject-level display of localization, detection and discrimination sensitivity in Experiment 3.

a, Localization sensitivity and (b) detection sensitivity for upright and inverted faces for the five different presentation times (values in square brackets refer to an additional blank screen of 8 ms between the face stimulus and the mask). For comparison, both panels also show discrimination sensitivity. c, Mean localization accuracy for upright and inverted faces shown for trials with correct (left panel) and incorrect (right panel) discrimination between upright and inverted faces. Every circle represents an individual participant, horizontal lines the means, and error bars 95% CIs.

Extended Data Fig. 4 Subject-level display of localization and discrimination sensitivity in Experiment 4.

Localization and discrimination sensitivity for the four different presentation times in (a) Experiment 4a and (b) Experiment 4b. (c) Mean localization accuracy for validly and invalidly cued objects for trials with correct (left panel) and incorrect (right panel) discrimination between valid and invalid cues (collapsed across Experiment 4a and 4b). Every circle represents an individual participant, horizontal lines the means, and error bars 95% CIs.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Fig. 1, Supplementary Results and Supplementary Tables 1 and 2.

Reporting Summary

Peer Review Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stein, T., Peelen, M.V. Dissociating conscious and unconscious influences on visual detection effects. Nat Hum Behav 5, 612–624 (2021). https://doi.org/10.1038/s41562-020-01004-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-020-01004-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing