Skip to main content
Log in

Nitrogenated-carbon nanoelectrocatalyst advertently processed from bio-waste of Allium sativum for oxygen reduction reaction

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Development of metal-free electrocatalyst recycled from waste is highly beneficial for environment-friendly application. Effective oxygen reduction reaction (ORR) relies on physico-chemical properties of electrocatalyst. Herein, the present report demonstrates the ORR studies of metal-free carbon nanoelectrocatalyst processed from biomass of Allium sativum. Carbon nanoparticles (CNPs) with various nitrogenation have been achieved by tuning the pyrolytic condition (400–1000 °C), using single bio-resource without additional dopants/activators. Under optimal condition, CNPs processed from 800 °C exhibit superior oxygen reduction function in alkaline medium with a Tafel slope value of 81 mV/dec, suggesting that the co-existence of nitrogen species improved the oxygen reduction active sites. Spectroscopic studies reveal that the inherent nitrogenation enriched the defects with mesoporosity in the graphitic carbon network synergizing the interfacial electron diffusion. Biomass-derived CNPs enable altered chemical species under different pyrolytic conditions suitable for cost-efficient, scalable, and sustainable ORR application.

Graphic abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Song, C., Zhang, J.: Electrocatalytic oxygen reduction reaction. In: PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, pp. 89–134 (2008)

  2. Ma, R., Lin, G., Zhou, Y., Liu, Q., Zhang, T., Shan, G., Yang, M., Wang, J.: A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. NPJ Comput. Mater. 5, 115–130 (2019)

    Article  CAS  Google Scholar 

  3. Cho, E.J., Trinh, L.P., Song, Y., Lee, G.Y., Bae, H.Y.: Bioconversion of biomass waste into high value chemicals. Bioresour. Technol. 298, 122386–122387 (2020)

    Article  CAS  PubMed  Google Scholar 

  4. Gasteiger, H.A., Kocha, S.S., Sompalli, B., Wagner, F.T.: Activity benchmarks and requirements for pt, pt-alloy, and non-pt oxygen reduction catalysts for PEMFCs. Appl Catal. B Environ. 56, 9–35 (2005)

    Article  CAS  Google Scholar 

  5. Liu, G., Li, X., Lee, J.W., Popov, B.N.: A review of the development of nitrogen-modified carbon-based catalysts for oxygen reduction at USC. Catal. Sci. Technol. 1, 207–217 (2011)

    Article  CAS  Google Scholar 

  6. Chen, Z., Higgins, D., Yu, A., Zhang, L., Zhang, J.: A review on non-precious metal electrocatalysts for PEM fuel cells. Energ. Environ. Sci. 4, 3167–3192 (2011)

    Article  CAS  Google Scholar 

  7. Osgood, H., Devaguptapu, S.V., Xu, H., Cho, J., Wu, G.: Transition metal (Fe Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today 11, 601–625 (2016)

    Article  CAS  Google Scholar 

  8. Shen, M., Wei, C., Ai, K., Lu, L.: Transition metal–nitrogen–carbon nanostructured catalysts for the oxygen reduction reaction: from mechanistic insights to structural optimization. Nano Res. 10, 1449–1470 (2017)

    Article  CAS  Google Scholar 

  9. Hu, C., Dai, L.: Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angew. Chem. 55, 11736–11758 (2016)

    Article  CAS  Google Scholar 

  10. Zhou, M., Wang, H.L., Guo, S.: Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem. Soc. Rev. 45, 1273–1307 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. Lu, Z.J., Bao, S.J., Gou, Y.T., Cai, C.J., Ji, C.C., Xu, M.W., Song, J., Wang, R.: Nitrogen-doped reduced-graphene oxide as an efficient metal-free electrocatalyst for oxygen reduction in fuel cells. RSC Adv. 3, 3990–3995 (2013)

    Article  CAS  Google Scholar 

  12. Borghei, M., Lehtonen, J., Liu, L., Rojas, O.J.: Advanced biomass-derived electrocatalysts for the oxygen reduction reaction. Adv. Mater. 30, 1–27 (2018)

    Google Scholar 

  13. Hu, C., Dai, L.: Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Adv. Mater. 29, 1604942–1604951 (2017)

    Article  CAS  Google Scholar 

  14. Hu, C., Qu, J., Xiao, Y., Zhao, S., Chen, H., Dai, L.: Carbon nanomaterials for energy and biorelated catalysis: recent advances and looking forward. ACS Cent. Sci. 5, 389–408 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, X., Zhao, Y., Yang, Y., Gao, S.: A universal strategy for carbon–based orr–active electrocatalyst: one porogen, two pore–creating mechanisms, three pore types. Nano Energy 62, 628–637 (2019)

    Article  CAS  Google Scholar 

  16. Chung, H.T., Won, J.H., Zelenay, P.: Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 4, 1922–1927 (2013)

    Article  PubMed  CAS  Google Scholar 

  17. Oh, H.S., Oh, J.G., Lee, W.H., Kim, H.J., Kim, H.: The influence of the structural properties of carbon on the oxygen reduction reaction of nitrogen modified carbon based catalysts. Int. J. Hydrogen Energy 36, 8181–8186 (2011)

    Article  CAS  Google Scholar 

  18. Sung, H., Sharma, M., Jang, J., Lee, S.Y., Choi, M.G., Lee, K., Jung, N.: Boosting the oxygen reduction activity of a nano-graphene catalyst by charge redistribution at the graphene-metal interface. Nanoscale 11, 5038–5047 (2019)

    Article  CAS  PubMed  Google Scholar 

  19. Tian, G.L., Zhao, M.Q., Yu, D., Kong, X.Y., Huang, J.Q., Zhang, Q., Wei, F.: Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Small 10, 2251–2259 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. Qiao, M., Titirici, M.M.: Engineering the interface of carbon electrocatalysts at the triple point for enhanced oxygen reduction reaction. Chem. A Eur. J. 24, 18374–18384 (2018)

    Article  CAS  Google Scholar 

  21. Zeng, L., Cui, X., Shi, J.: Engineering crystalline coooh anchored on an n-doped carbon support as a durable electrocatalyst for the oxygen reduction reaction. Dalt. Trans. 47, 6069–6074 (2018)

    Article  CAS  Google Scholar 

  22. Li, L., Bi, H., Gai, S., He, F., Gao, P., Dai, Y., Zhang, X., Yang, D., Zhang, M., Yang, P.: Uniformly dispersed znfe 2 o 4 nanoparticles on nitrogen-modified graphene for high-performance supercapacitor as electrode. Sci. Rep. 7, 10–12 (2017)

    Article  CAS  Google Scholar 

  23. Chen, Q., Tan, X., Liu, Y., Liu, S., Li, M., Gu, Y., Zhang, P., Ye, S., Yang, Z., Yang, Y.: Biomass-derived porous graphitic carbon materials for energy and environmental applications. J. Mater. Chem. A. 8, 5773–5811 (2020)

    Article  CAS  Google Scholar 

  24. Zhang, F., Liu, T., Li, M., Yu, M., Luo, Y., Tong, Y., Li, Y.: Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett. 17, 3097–3104 (2017)

    Article  CAS  PubMed  Google Scholar 

  25. Pal, N., Bhaumik, A.: Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids. Adv. Colloid. Interface Sci. 189, 21–41 (2013)

    Article  PubMed  CAS  Google Scholar 

  26. Duo, W., Xu, D.: Active sites derived from heteroatom doping in carbon materials for oxygen reduction reaction. Intechopen 3, 51–67 (2018)

    Google Scholar 

  27. Hegde, G., Abdul Manaf, S.A., Kumar, A., Ali, G.A.M., Chong, K.F., Ngaini, Z., Sharma, K.V.: Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. ACS Sustain. Chem. Eng. 3, 2247–2253 (2015)

    Article  CAS  Google Scholar 

  28. Lee, D.W., Jin, M.H., Park, J.H., Lee, Y.J., Choi, Y.C.: flexible synthetic strategies for lignin-derived hierarchically porous carbon materials. ACS Sustain. Chem. Eng. 6, 10454–10462 (2018)

    Article  CAS  Google Scholar 

  29. Hershko, V., Klein, E., Nussinovitch, A.: Relationships between edible coatings and garlic skin. J. Food Sci. 61, 769–777 (1996)

    Article  CAS  Google Scholar 

  30. Kubota, N., Malthews, M.A., Takahagi, T., Kilewer, W.M.: Budbreak with garlic preparations. Am. J. Enol. Vitic. 51, 409–414 (2000)

    CAS  Google Scholar 

  31. Prasad Reddy, J., Rhim, J.W.: Isolation and characterization of cellulose nanocrystals from garlic skin. Mater. Lett. 129, 20–23 (2014)

    Article  CAS  Google Scholar 

  32. Supriya, G., Sriram, Z., Ngaini, C., Kavitha, M., Kurkuri, I.P., Padova, D., Hedge, G.: The role of temperature on physical–chemical properties of green synthesized porous carbon nanoparticles. Waste Biomass. Valori. 11, 3821–3831 (2019)

    Article  CAS  Google Scholar 

  33. Tian, Z., Xiang, M., Zhou, J., Hu, L., Cai, J.: Nitrogen and oxygen-doped hierarchical porous carbons from algae biomass: direct carbonization and excellent electrochemical properties. Electrochim. Acta 211, 225–233 (2016)

    Article  CAS  Google Scholar 

  34. Peng, H., Wang, X., Zhao, Y., Tan, T., Mentbayeva, A., Bakenov, Z., Zhang, Y.: Enhanced electrochemical performance of sulfur/polyacrylonitrile composite by carbon coating for lithium/sulfur batteries. J. Nanopar. Res. 19, 348–358 (2017)

    Article  CAS  Google Scholar 

  35. Feng, W., He, P., Ding, S., Zhang, G., He, M., Dong, F., Wen, J., Du, L., Liu, M.: Oxygen-doped activated carbons derived from three kinds of biomass: preparation, characterization and performance as electrode materials for supercapacitors. RSC Adv. 6, 5949–5956 (2016)

    Article  CAS  Google Scholar 

  36. Jiao, X., Qiu, Y., Zhang, L., Zhang, X.: Comparison of the characteristic properties of reduced graphene oxides synthesized from natural graphites with different graphitization degrees. RSC Adv. 7, 52337–52344 (2017)

    Article  CAS  Google Scholar 

  37. Akshaya, K.B., Bhat, V.S., Anitha, V., George, L., Hegde, G.: Non-enzymatic electrochemical determination of progesterone using carbon nanospheres from onion peels coated on carbon fiber paper. J. Electrochem. Soc. 166, 1097–1106 (2019)

    Article  CAS  Google Scholar 

  38. Samanta, A., Chanda, D.K., Das, P.S., Ghosh, J., Dey, A., Das, S., Mukhopadhyay, A.K.: Synthesis of mixed calcite–calcium oxide nanojasmine flowers. Ceram. Int. 42, 2339–2348 (2016)

    Article  CAS  Google Scholar 

  39. Xia, L., Huang, H., Fan, Z., Hu, D., Zhang, D., Khan, A.S., Usman, M., Pan, L.: Hierarchical macro-/meso-/microporous oxygen-doped carbon derived from sodium alginate: a cost-effective biomass material for binder-free supercapacitors. Mater. Des. 182, 108048–108057 (2019)

    Article  CAS  Google Scholar 

  40. Snowdon, M.R., Mohanty, A.K., Misra, M.: A study of carbonized lignin as an alternative to carbon black. ACS Sustain. Chem. Eng. 2, 1257–1263 (2014)

    Article  CAS  Google Scholar 

  41. Supriya, S., Sriram, G., Ngaini, Z., Kavitha, C., Kurkuri, M., Padova, I.P., Hegde, G.: Superior supercapacitors based on biowaste materials. J. Eng. Sci. Res. 1, 24 (2019)

    Google Scholar 

  42. Barrett, E.P., Joyner, L.G., Halenda, P.P.: The determination of pore volume and area distributions in porous substances in computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951)

    Article  CAS  Google Scholar 

  43. Rose, M., Korenblit, Y., Kockrick, E., Borchardt, L., Oschatz, M., Kaskel, S., Yushin, G.: Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. Small 7, 1108–1117 (2011)

    Article  CAS  PubMed  Google Scholar 

  44. Kailash, C.A.: Therapeutic actions of garlic constituents. Med. Res. Rev. 16, 111–124 (1996)

    Article  Google Scholar 

  45. Zhang, L., Li, Y., Zhang, L., Li, D.W., Karpuzov, D., Long, Y.T.: Electrocatalytic oxidation of nadh on graphene oxide and reduced graphene oxide modified screen-printed electrode. Int. J. Electrochem. Sci. 6, 819–829 (2011)

    Google Scholar 

  46. Palgrave, R.G., Payne, D.J., Egdell, R.G.: Nitrogen diffusion in doped TiO2 (110) single crystals: a combined XPS and SIMS study. J. Mater. Chem. A 19, 8418–8425 (2009)

    Article  CAS  Google Scholar 

  47. Tai, J., Hu, J., Chen, Z., Lu, H.: Two-step synthesis of boron and nitrogen codoped graphene as a synergistically enhanced catalyst for the oxygen reduction reaction. RSC Adv. 4, 61437–61443 (2014)

    Article  CAS  Google Scholar 

  48. Zhang, G.Y., Ma, X.C., Zhong, D.Y., Wang, E.G.: Polymerized carbon nitride nanobells. J. Appl. Phys. 91, 9324–9332 (2002)

    Article  CAS  Google Scholar 

  49. Biddinger, E.J., Ozkan, U.S.: Role of Graphitic edge plane exposure in carbon nanostructures for oxygen reduction reaction. J. Phys. Chem. C 114, 15306–15314 (2010)

    Article  CAS  Google Scholar 

  50. Panomsuwan, G., Chiba, S., Kaneko, Y., Saito, N., Ishizaki, T.: In situ solution plasma synthesis of nitrogen-doped carbon nanoparticles as metal-free electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2, 18677–18686 (2014)

    Article  CAS  Google Scholar 

  51. Praveen, R., Ramaraj, R.: Gold/silver bimetal nanoparticles incorporated graphitic carbon nitride nanohybrid materials for oxygen reduction reaction. Mater. Chem. Phys. 238, 121915–121923 (2019)

    Article  CAS  Google Scholar 

  52. Liu, R., Wu, D., Feng, X., Müllen, K.: Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem. 49, 2565–2569 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P. K. thankfully acknowledges the support of CSIR (HRDG) for the award of SRF (31/20(0181)/2019-EMR-I. G. P. thankfully acknowledges the support of ICMR for the award of ICMR-SRF (5/3/8/26/ITR-F/2020). M. V. gratefully acknowledges the support of the Department of Science and Technology, India for the DST-Inspire Faculty award (DST/INSPIRE/04/2015/002081). G. H. would like to thank DST-Nanomission, Government of India for providing grant titled “Biowaste based porous nano materials for efficient low-cost energy storage devices” having Grant no SR/NM/NT-1026/2017. All authors’ thanks the staffs of Central Instrumentation Facility (CIF), CSIR-Central Electrochemical Research Institute, Karaikudi. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Murugan Veerapandian or Gurumurthy Hegde.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4416 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanagavalli, P., Pandey, G.R., Bhat, V.S. et al. Nitrogenated-carbon nanoelectrocatalyst advertently processed from bio-waste of Allium sativum for oxygen reduction reaction. J Nanostruct Chem 11, 343–352 (2021). https://doi.org/10.1007/s40097-020-00370-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-020-00370-w

Keywords

Navigation