Skip to main content
Log in

Remarks about the Q-lattice of the variety of lattices

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

Let L denote the Q-lattice of the variety \({\mathcal {V}}\) of lattices, i.e. the lattice of quasivarieties that are contained in \({\mathcal {V}}\). Let F denote the free lattice in \({\mathcal {V}}\) with \(\omega \) free generators and let Q(F) denote the quasivariety of lattices generated by F. Let Fin denote the collection of finite lattices which belong to Q(F) and let Q(Fin) denote the quasivariety generated by Fin. Moreover, let \({\mathcal {M}}^{-}_{3}\) denote the quasivariety of lattices which do not contain an isomorphic copy of \(M_3\) (the 5-element non-distributive modular lattice) as a sublattice and let \({\mathcal {S}}\) denote a selector of non-isomorphic finite quasicritical lattices which belong to Q(Fin). In this paper, we establish the following:

  • The filter in L generated by Q(F) is prime.

  • For every quasivariety \({\mathcal {K}}\) contained in \({\mathcal {M}}^{-}_{3}\), the interval \([{\mathcal {K}}, {\mathcal {V}}]\) contains an isomorphic copy of the ideal lattice I(F) of F. In particular, the filter in L generated by Q(F) contains an isomorphic copy of I(F).

  • The distributive lattice of the order ideals of \(({\mathcal {S}}, \le )\), where \(A \le B\) means \(A \in Q(B)\), is uncountable and is a homomorphic image of the Q-lattice of Q(Fin).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams, M.E., Adaricheva, K.V., Dziobiak, W., Kravchenko, A.V.: Some open questions related to the problem of Birkhoff and Maltsev. Stud. Log. 78, 357–378 (2004)

    Article  Google Scholar 

  2. Adams, M.E., Dziobiak, W.: \(Q\)-universal quasivarieties of algebras. Proc. Am. Math. Soc. 120, 1053–1059 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Adams, M.E., Dziobiak, W.: \(Q\)-universal varieties of bounded lattices. Algebra Univers. 48, 303–323 (2002)

    Article  MathSciNet  Google Scholar 

  4. Adams, M.E., Dziobiak, W., Sankappanavar, H.P.: Universality and \(Q\)-Universality in Varieties of Quasi-Stone Algebras. Algebras and Lattices in Hawaii, pp. 1–7. Lulu Press, Inc, Morrisville (2018)

    Google Scholar 

  5. Adams, M.E., Dziobiak, W., Sankappanavar, H.P.: A quasivariety: relatively finite-to-finite universal but not Q-universal. (to appear)

  6. Adaricheva, K.V., Gorbunov, V.A.: Equational closure operator and forbidden semidistributive lattices. Sib. Math. J. 30, 831–849 (1989)

    Article  MathSciNet  Google Scholar 

  7. Antonius, R., Rival, I.: A note on Whitman’s property for free lattices. Algebra Univers. 4, 271–272 (1974)

    Article  MathSciNet  Google Scholar 

  8. Bergman, C.: Joins and Maltsev Products of Congruence Permutable Varieties. Algebras and Lattices in Hawaii, pp. 20–25. Lulu Press, Inc, Morrisville (2018)

    Google Scholar 

  9. Birkhoff, G.: Universal algebra. In: Proceedings of the First Canadian Mathematical Congress (Montreal, 1945), pp. 310–326. The University of Toronto Press (1946)

  10. Baker, K.A., Hales, A.W.: From a lattice to its ideal lattice. Algebra Univers. 4, 250–258 (1974)

    Article  MathSciNet  Google Scholar 

  11. Davey, B.A., Sands, B.: An application of Whitman’s condition to lattices with no infinite chains. Algebra Univers. 7, 171–178 (1977)

    Article  MathSciNet  Google Scholar 

  12. Day, A.: A simple solution to the word problem for lattices. Can. Math. Bull. 13, 253–254 (1970)

    Article  MathSciNet  Google Scholar 

  13. Day, A.: Splitting lattices generate all lattices. Algebra Univers. 7, 163–170 (1977)

    Article  MathSciNet  Google Scholar 

  14. Day, A.: Characterizations of finite lattices that are bounded-homomorphic images or sublattices of free lattices. Can. J. Math. 31, 69–78 (1979)

    Article  MathSciNet  Google Scholar 

  15. Dziobiak, W.: On lattice identities satisfied in subquasivariety lattices of varieties of modular lattices. Algebra Univers. 22, 205–214 (1986)

    Article  MathSciNet  Google Scholar 

  16. Freese, R., Nation, J.B.: Congruence lattice of semilattices. Pac. J. Math. 49, 51–58 (1973)

    Article  MathSciNet  Google Scholar 

  17. Freese, R., Ježek, J., Nation, J.B.: Free Lattices. Mathematical Surveys and Monographs vol. 42. American Mathematical Society, Providence, RI (1995)

  18. Freese, R., Ježek, J., Nation, J.B., Slavík, V.: Singular covers in free lattices. Order 3, 39–46 (1986)

    Article  MathSciNet  Google Scholar 

  19. Freese, R., McKenzie, R.: Maltsev families of varieties closed under join or Maltsev product. Algebra Univers. 77, 29–50 (2017)

    Article  MathSciNet  Google Scholar 

  20. Gorbunov, V.A.: Algebraic Theory of Quasivarieties. Siberian School of Algebra and Logic. Consultants Bureau, New York (1998)

    Google Scholar 

  21. Grätzer, G., Lakser, H.: The lattice of quasivarieties of lattices. Algebra Univers. 9, 102–115 (1979)

    Article  MathSciNet  Google Scholar 

  22. Hyndman, J., Nation, J.B.: The Lattice of Subquasivarieties of a Locally Finite Quasivariety. Springer International Publishing AG, Cham (2018)

    Book  Google Scholar 

  23. Ježek, J., Slavík, V.: Primitive lattices. Czechoslov. Math. J. 29, 505–634 (1979)

    MathSciNet  MATH  Google Scholar 

  24. Jónsson, B., Nation, J.B.: A report on sublattices of a free lattices. In: Contributions to Universal Algebra. Coll. Math. Soc. János Bolyai, vol. 17, pp. 233–257. North-Holland Publishing Co., Amsterdam (1977)

  25. Kostinsky, A.: Projective lattices and bounded homomorphisms. Pac. J. Math. 40, 111–119 (1972)

    Article  MathSciNet  Google Scholar 

  26. Maltsev, A.I.: Multiplication of classes of algebraic systems. Sibirsk. Mat. Ž. 8, 346–365 (1967). (Russian)

    MathSciNet  Google Scholar 

  27. Maltsev, A.I.: Problems on the borderline of algebra and logic. In: Proceedings of the International Congress of Mathematicians, Moscow, pp. 217–231 (1968)

  28. Maltsev, A.I.: Algebraic Systems. Springer, Heidelberg (1973)

    Google Scholar 

  29. McKenzie, R.: Equational bases and non-modular lattice varieties. Trans. Am. Math. Soc. 174, 1–43 (1972)

    Article  Google Scholar 

  30. Nation, J.B.: Finite sublattices of a free lattice. Trans. Am. Math. Soc. 269, 311–337 (1982)

    Article  MathSciNet  Google Scholar 

  31. Tschantz, S.T.: Infinite intervals in free lattices. Order 6, 367–388 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are appreciative of the referee for Lemma 2.1 and its proof, an interesting and challenging question for us to ponder, and a counterexample which eliminated a natural approach of proving that the Q-lattice of Q(F) is distributive.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Adams.

Additional information

Presented by W. DeMeo.

Dedicated to Ralph Freese, Bill Lampe, and J.B. Nation on the occasion of their 70th birthdays.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adams, M.E., Dziobiak, W. Remarks about the Q-lattice of the variety of lattices. Algebra Univers. 82, 5 (2021). https://doi.org/10.1007/s00012-020-00681-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-020-00681-7

Keywords

Mathematics Subject Classification

Navigation