Skip to main content
Log in

Synthesis and Initial Evaluation of Solid Acid Catalyst Derived from Spent Coffee Grounds for the Esterification of Oleic Acid and Methanol

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Spent coffee grounds (SCGs) were utilized in the synthesis of a solid acid catalyst (SAC) through a carbonization–sulfonation process performed at low temperatures (350–500 °C for carbonization and 50–150 °C for sulfonation) and short processing times (1–10 h). The best SAC from the process was able to convert more than 90% of oleic acid to methyl oleate during esterification with methanol (10 mol OA/mol methanol, 80 °C, 7 h, 10%w/w catalyst loading). It was obtained by carbonizing SCG at 400 °C for 2 h and then sulfonating the biochar at 100 °C for 1 h. The reusability tests performed in 4 cycles at the same esterification conditions reveal loss of activity of about 70% of its original state, corresponding to a decrease in total acid and sulfonic acid densities from 4.22 and 3.36 mmol H+/g to 1.33 and 1.16 mmol H+/g, respectively. This process is a considerable improvement from that reported in previous works, having no activating agents in the carbonization process and with significantly shorter times for processing.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mićić, R., Tomić, M., Martinović, F., Kiss, F., Simikić, M., Aleksic, A.: Reduction of free fatty acids in waste oil for biodiesel production by glycerolysis: investigation and optimization of process parameters. Green Process. Synth. 8, 15–23 (2019). https://doi.org/10.1515/gps-2017-0118

    Article  Google Scholar 

  2. Xie, W., Gao, C., Wang, H.: Biodiesel production from low-quality oils using heterogeneous cesium salts of vanadium-substituted polyoxometalate acid catalyst. Catalysts 10, 1–13 (2020). https://doi.org/10.3390/catal10091060

    Article  Google Scholar 

  3. Ambat, I., Srivastava, V., Sillanpää, M.: Recent advancement in biodiesel production methodologies using various feedstock: a review. Renew. Sustain. Energy Rev. 90, 356–369 (2018). https://doi.org/10.1016/j.rser.2018.03.069

    Article  Google Scholar 

  4. Quitain, A.T., Sumigawa, Y., Mission, E.G., Sasaki, M., Assabumrungrat, S., Kida, T.: Graphene oxide and microwave synergism for efficient esterification of fatty acids. Energy Fuels 32, 3599–3607 (2018). https://doi.org/10.1021/acs.energyfuels.8b00119

    Article  Google Scholar 

  5. García Martín, J.F., Carrión Ruiz, J., Torres García, M., Feng, C.-H., Álvarez Mateos, P.: Esterification of free fatty acids with glycerol within the biodiesel production framework. Processes 7, 832 (2019). https://doi.org/10.3390/pr7110832

    Article  Google Scholar 

  6. Nongbe, M.C., Ekou, T., Ekou, L., Yao, K.B., Le Grognec, E., Felpin, F.X.: Biodiesel production from palm oil using sulfonated graphene catalyst. Renew. Energy 106, 135–141 (2017). https://doi.org/10.1016/j.renene.2017.01.024

    Article  Google Scholar 

  7. Karmee, S.K.: Technical valorisation of spent coffee grounds and food waste using sulphuric acid immobilised on silica. Biofuels 11, 155–161 (2020). https://doi.org/10.1080/17597269.2017.1378989

    Article  Google Scholar 

  8. Gao, Z., Tang, S., Cui, X., Tian, S., Zhang, M.: Efficient mesoporous carbon-based solid catalyst for the esterification of oleic acid. Fuel 140, 669–676 (2015). https://doi.org/10.1016/j.fuel.2014.10.012

    Article  Google Scholar 

  9. Yu, H., Niu, S., Lu, C., Li, J., Yang, Y.: Sulfonated coal-based solid acid catalyst synthesis and esterification intensification under ultrasound irradiation. Fuel 208, 101–110 (2017). https://doi.org/10.1016/j.fuel.2017.06.122

    Article  Google Scholar 

  10. Ngaosuwan, K., Goodwin, J.G., Prasertdham, P.: A green sulfonated carbon-based catalyst derived from coffee residue for esterification. Renew. Energy 86, 262–269 (2016). https://doi.org/10.1016/j.renene.2015.08.010

    Article  Google Scholar 

  11. Wang, H., Wang, L., He, S., Xiao, F.-S.: Enhancement of catalytic properties by adjusting molecular diffusion in nanoporous catalysts. In: Advances in Catalysis, pp. 1–47. Elsevier, Amsterdam (2018)

    Google Scholar 

  12. Mansir, N., Taufiq-Yap, Y.H., Rashid, U., Lokman, I.M.: Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: a review. Energy Convers. Manag. 141, 171–182 (2017). https://doi.org/10.1016/j.enconman.2016.07.037

    Article  Google Scholar 

  13. Xiu, Y., Chen, A., Liu, X., Chen, C., Chen, J., Guo, L., Zhang, R., Hou, Z.: Selective dehydration of sorbitol to 1,4-anhydro-d-sorbitol catalyzed by a polymer-supported acid catalyst. RSC Adv. 5, 28233–28241 (2015). https://doi.org/10.1039/c5ra01371b

    Article  Google Scholar 

  14. Naeem, M.M., Al-Sakkari, E.G., Boffito, D.C., Gadalla, M.A., Ashour, F.H.: One-pot conversion of highly acidic waste cooking oil into biodiesel over a novel bio-based bi-functional catalyst. Fuel (2021). https://doi.org/10.1016/j.fuel.2020.118914

    Article  Google Scholar 

  15. Konwar, L.J., Boro, J., Deka, D.: Review on latest developments in biodiesel production using carbon-based catalysts. Renew. Sustain. Energy Rev. 29, 546–564 (2014). https://doi.org/10.1016/j.rser.2013.09.003

    Article  Google Scholar 

  16. Toda, M., Takagaki, A., Okamura, M., Kondo, J.N., Hayashi, S., Domen, K., Hara, M.: Biodiesel made with sugar catalyst. Nature 438, 177–178 (2005). https://doi.org/10.1038/438177a

    Article  Google Scholar 

  17. Kastner, J.R., Miller, J., Geller, D.P., Locklin, J., Keith, L.H., Johnson, T.: Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal. Today 190, 122–132 (2012). https://doi.org/10.1016/j.cattod.2012.02.006

    Article  Google Scholar 

  18. Liu, T., Li, Z., Li, W., Shi, C., Wang, Y.: Preparation and characterization of biomass carbon-based solid acid catalyst for the esterification of oleic acid with methanol. Bioresour. Technol. 133, 618–621 (2013). https://doi.org/10.1016/j.biortech.2013.01.163

    Article  Google Scholar 

  19. Bureros, G.M.A., Tanjay, A.A., Cuizon, D.E.S., Go, A.W., Cabatingan, L.K., Agapay, R.C., Ju, Y.-H.: Cacao shell-derived solid acid catalyst for esterification of oleic acid with methanol. Renew. Energy 138, 489–501 (2019). https://doi.org/10.1016/j.renene.2019.01.082

    Article  Google Scholar 

  20. Flores, K.P., Omega, J.L.O., Cabatingan, L.K., Go, A.W., Agapay, R.C., Ju, Y.H.: Simultaneously carbonized and sulfonated sugarcane bagasse as solid acid catalyst for the esterification of oleic acid with methanol. Renew. Energy 130, 510–523 (2019). https://doi.org/10.1016/j.renene.2018.06.093

    Article  Google Scholar 

  21. International Coffee Organization, Coffee production by exporting countries and world coffee consumption. http://www.ico.org/trade_statistics.asp (2020). Accessed 20 June 2020

  22. Murthy, P.S., Madhava Naidu, M.: Sustainable management of coffee industry by-products and value addition—a review. Resour. Conserv. Recycl. 66, 45–58 (2012). https://doi.org/10.1016/j.resconrec.2012.06.005

    Article  Google Scholar 

  23. Kovalcik, A., Obruca, S., Marova, I.: Valorization of spent coffee grounds: a review. Food Bioprod. Process. 110, 104–119 (2018). https://doi.org/10.1016/j.fbp.2018.05.002

    Article  Google Scholar 

  24. Silva, M.A., Nebra, S.A., Machado Silva, M.J., Sanchez, C.G.: The use of biomass residues in the Brazilian soluble coffee industry. Biomass Bioenergy 14, 457–467 (1998). https://doi.org/10.1016/S0961-9534(97)10034-4

    Article  Google Scholar 

  25. Vardon, D.R., Moser, B.R., Zheng, W., Witkin, K., Evangelista, R.L., Strathmann, T.J., Rajagopalan, K., Sharma, B.K.: Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar. ACS Sustain. Chem. Eng. 1, 1286–1294 (2013). https://doi.org/10.1021/sc400145w

    Article  Google Scholar 

  26. Pujol, D., Liu, C., Gominho, J., Olivella, M.À., Fiol, N., Villaescusa, I., Pereira, H.: The chemical composition of exhausted coffee waste. Ind. Crops Prod. 50, 423–429 (2013). https://doi.org/10.1016/j.indcrop.2013.07.056

    Article  Google Scholar 

  27. Loyao, A.S., Villasica, S.L.G., Dela Peña, P.L.L., Go, A.W.: Extraction of lipids from spent coffee grounds with non-polar renewable solvents as alternative. Ind. Crops Prod. 119, 152–161 (2018). https://doi.org/10.1016/j.indcrop.2018.04.017

    Article  Google Scholar 

  28. Juarez, G.F.Y., Pabiloña, K.B.C., Manlangit, K.B.L., Go, A.W.: Direct dilute acid hydrolysis of spent coffee grounds: a new approach in sugar and lipid recovery. Waste Biomass Valoriz. 9, 235–246 (2018). https://doi.org/10.1007/s12649-016-9813-9

    Article  Google Scholar 

  29. Go, A.W., Conag, A.T., Bertumen, M.M.N.: Taguchi method to improve the production of sugar-rich hydrolysate from non-delipidated spent coffee grounds, and subsequent recovery of lipids and bioactive compounds. Biofuels 10, 193–205 (2019). https://doi.org/10.1080/17597269.2017.1309855

    Article  Google Scholar 

  30. Obruca, S., Benesova, P., Petrik, S., Oborna, J., Prikryl, R., Marova, I.: Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds. Process Biochem. 49, 1409–1414 (2014). https://doi.org/10.1016/j.procbio.2014.05.013

    Article  Google Scholar 

  31. Kwon, E.E., Yi, H., Jeon, Y.J.: Sequential co-production of biodiesel and bioethanol with spent coffee grounds. Bioresour. Technol. 136, 475–480 (2013). https://doi.org/10.1016/j.biortech.2013.03.052

    Article  Google Scholar 

  32. Cay, H., Duman, G., Yanik, J.: Two-step gasification of biochar for hydrogen-rich gas production: effect of the biochar type and catalyst. Energy Fuels 33, 7398–7405 (2019). https://doi.org/10.1021/acs.energyfuels.9b01354

    Article  Google Scholar 

  33. Statistics Division - Food and Agriculture Organization of the United Nations, Crop Production and Trade Data, FAOSTAT. http://www.fao.org/faostat/en/#data (2019). Accessed 13 June 2020

  34. Goertzen, S.L., Thériault, K.D., Oickle, A.M., Tarasuk, A.C., Andreas, H.A.: Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon N. Y. 48, 1252–1261 (2010). https://doi.org/10.1016/j.carbon.2009.11.050

    Article  Google Scholar 

  35. Scandinavian Pulp Paper and Board Testing Committee, SCAN-CM 65:02: Pulp total acidic group content - conductometric titration method, SCAN-Test Methods 1–4 (2002)

  36. Go, A.W., Tran Nguyen, P.L., Huynh, L.H., Liu, Y.T., Sutanto, S., Ju, Y.H.: Catalyst free esterification of fatty acids with methanol under subcritical condition. Energy 70, 393–400 (2014). https://doi.org/10.1016/j.energy.2014.04.013

    Article  Google Scholar 

  37. Mendaros, C.M., Go, A.W., Nietes, W.J.T., Gollem, B.E.J.O., Cabatingan, L.K.: Direct sulfonation of cacao shell to synthesize a solid acid catalyst for the esterification of oleic acid with methanol. Renew. Energy 152, 320–330 (2020). https://doi.org/10.1016/j.renene.2020.01.066

    Article  Google Scholar 

  38. Huang, M., Luo, J., Fang, Z., Li, H.: Biodiesel production catalyzed by highly acidic carbonaceous catalysts synthesized via carbonizing lignin in sub- and super-critical ethanol. Appl. Catal. B 190, 103–114 (2016). https://doi.org/10.1016/j.apcatb.2016.02.069

    Article  Google Scholar 

  39. Zhou, Y., Niu, S., Li, J.: Activity of the carbon-based heterogeneous acid catalyst derived from bamboo in esterification of oleic acid with ethanol. Energy Convers. Manag. 114, 188–196 (2016). https://doi.org/10.1016/j.enconman.2016.02.027

    Article  Google Scholar 

  40. Okamura, M., Takagaki, A., Toda, M., Kondo, J.N., Domen, K., Tatsumi, T., Hara, M., Hayashi, S.: Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon. Chem. Mater. 18, 3039–3045 (2006)

    Article  Google Scholar 

  41. Estes, C.S., Gerard, A.Y., Godward, J.D., Hayes, S.B., Liles, S.H., Shelton, J.L., Stewart, T.S., Webster, R.I., Webster, H.F.: Preparation of highly functionalized carbon nanoparticles using a one-step acid dehydration of glycerol. Carbon N. Y. 142, 547–557 (2019). https://doi.org/10.1016/j.carbon.2018.10.074

    Article  Google Scholar 

  42. Chellappan, S., Nair, V., Sajith, V., Aparna, K.: Synthesis, optimization and characterization of biochar based catalyst from sawdust for simultaneous esterification and transesterification. Chin. J. Chem. Eng. (2018). https://doi.org/10.1016/j.cjche.2018.02.034

    Article  Google Scholar 

  43. Zeng, D., Zhang, Q., Chen, S., Liu, S., Wang, G.: Synthesis porous carbon-based solid acid from rice husk for esterification of fatty acids. Microporous Mesoporous Mater. 219, 54–58 (2016). https://doi.org/10.1016/j.micromeso.2015.07.028

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Taiwan Building Technology Center (Grant/Project Number—108P011) from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education in Taiwan, as well as the National Taiwan University of Science and Technology for the teaching and research start-up grant (Grant/Project Number—109O210007/109O410307) provided for 2019–2021 to organize the research group involved and partially supported the acquisition of the materials used in this work.

Author information

Authors and Affiliations

Authors

Contributions

Formal analysis, visualization, writing–original draft, writing–review and editing [RCA]; methodology, investigation, formal analysis, data curation [H-CL]; supervision, project administration, funding acquisition, writing–review and editing [Y-HJ]; conceptualization, formal analysis, writing—review and editing, project administration and funding acquisition [AWG]; writing–review and editing [AEA]; writing–review and editing [PLT-N]; writing–review and editing [CTT]; writing–review and editing [KLQ].

Corresponding author

Correspondence to Alchris Woo Go.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agapay, R.C., Liu, HC., Ju, YH. et al. Synthesis and Initial Evaluation of Solid Acid Catalyst Derived from Spent Coffee Grounds for the Esterification of Oleic Acid and Methanol. Waste Biomass Valor 12, 4387–4397 (2021). https://doi.org/10.1007/s12649-020-01325-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01325-6

Keywords

Navigation