Skip to main content

Advertisement

Log in

Comparative Treatment Efficiency and Fatty Acid Synthesis of Chlorella vulgaris: Immobilization Versus Co-cultivation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Microalgae consists a promising feedstock for biofuel production due to their high growth rates and lipid content. Microalgal wastewater remediation can achieve both organic matters removal and biodiesel production, leading to economic benefits. In this study, immobilized microalgae and algae-bacteria consortia were used to treat synthetic fracturing wastewater. Organic matter removal, biomass production and lipid synthesis by co-culture of Chlorella vulgaris and Bacillus bacteria were investigated in comparison with an algae immobilization system during the process. The chemical oxygen demand removal rate and lipid concentration of the co-culture were both lower than those of the immobilized C. vulgaris, while algal biomass under the two cultivation conditions was similar. The immobilized algae provided higher amount of fatty acids, especially mono-unsaturated fatty acids, than the algae-bacteria consortia. Most of the fuel properties of biodiesel produced in both immobilized and co-cultured C. vulgaris complied with the specifications for standard biodiesel. The comparative results of enzyme activity showed that immobilization can enhance the activity of acetyl-CoA carboxylase, the key enzyme for fatty acids synthesis, leading to the formation of more fatty acids and lipids. Furthermore, immobilization decreased the ADP-glucose pyrophosphorylase activity and inhibited starch formation. Immobilization favors lipid production and removal of organics by C. vulgaris.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5

Similar content being viewed by others

References

  1. Sharma, Y.C., Singh, V.: Microalgal biodiesel: a possible solution for India’s energy security. Renew. Sust. Energy Rev. 67, 72–88 (2017). https://doi.org/10.1016/j.rser.2016.08.031

    Article  Google Scholar 

  2. Mofijur, M., Rasul, M., Hassan, N., Nabi, M.: Recent development in the production of third generation biodiesel from microalgae. Energy Procedia 156, 53–58 (2019). https://doi.org/10.1016/j.egypro.2018.11.088

    Article  Google Scholar 

  3. Goh, B.H.H., Ong, H.C., Cheah, M.Y., Chen, W.-H., Yu, K.L., Mahlia, T.M.I.: Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review. Renew. Sust. Energy Rev. 107, 59–74 (2019). https://doi.org/10.1016/j.rser.2019.02.012

    Article  Google Scholar 

  4. Kumar, B.R., Deviram, G., Mathimani, T., Duc, P.A., Pugazhendhi, A.: Microalgae as rich source of polyunsaturated fatty acids. Biocatal. Agric. Biotechnol. 17, 583–588 (2019). https://doi.org/10.1016/j.bcab.2019.01.017

    Article  Google Scholar 

  5. Mathimani, T., Uma, L., Prabaharan, D.: Formulation of low-cost seawater medium for high cell density and high lipid content of Chlorella vulgaris BDUG 91771 using central composite design in biodiesel perspective. J. Clean. Prod. 198, 575–586 (2018). https://doi.org/10.1016/j.jclepro.2018.06.303

    Article  Google Scholar 

  6. Mondal, M., Goswami, S., Ghosh, A., Oinam, G., Tiwari, O., Das, P., Gayen, K., Mandal, M., Halder, G.: Production of biodiesel from microalgae through biological carbon capture: a review. 3 Biotech 7, 99 (2017). https://doi.org/10.1007/s13205-017-0727-4

    Article  Google Scholar 

  7. Deshmukh, S., Bala, K., Kumar, R.: Selection of microalgae species based on their lipid content, fatty acid profile and apparent fuel properties for biodiesel production. Environ. Sci. Pollut. Res. 26, 24462–24473 (2019). https://doi.org/10.1007/s11356-019-05692-z

    Article  Google Scholar 

  8. Talebi, A.F., Mohtashami, S.K., Tabatabaei, M., Tohidfar, M., Bagheri, A., Zeinalabedini, M., Mirzaei, H.H., Mirzajanzadeh, M., Shafaroudi, S.M., Bakhtiari, S.: Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Res. 2, 258–267 (2013). https://doi.org/10.1016/j.algal.2013.04.003

    Article  Google Scholar 

  9. Nascimento, I.A., Marques, S.S.I., Cabanelas, I.T.D., Pereira, S.A., Druzian, J.I., de Souza, C.O., Vich, D.V., de Carvalho, G.C., Nascimento, M.A.: Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenergy Res. 6, 1–13 (2013). https://doi.org/10.1007/s12155-012-9222-2

    Article  Google Scholar 

  10. Tate, J.J., Gutierrez-Wing, M.T., Rusch, K.A., Benton, M.G.: The effects of plant growth substances and mixed cultures on growth and metabolite production of green algae Chlorella sp.: a review. J. Plant Growth Regul. 32, 417–428 (2013). https://doi.org/10.1007/s00344-012-9302-8

    Article  Google Scholar 

  11. Anto, S., Pugazhendhi, A., Mathimani, T.: Lipid enhancement through nutrient starvation in Chlorella sp. and its fatty acid profiling for appropriate bioenergy feedstock. Biocatal. Agric Biotechnol. 20, 101179 (2019). https://doi.org/10.1016/j.bcab.2019.101179

    Article  Google Scholar 

  12. Chen, J., Li, J., Dong, W., Zhang, X., Tyagi, R.D., Drogui, P., Surampalli, R.Y.: The potential of microalgae in biodiesel production. Renew. Sust. Energy Rev. 90, 336–346 (2018). https://doi.org/10.1016/j.rser.2018.03.073

    Article  Google Scholar 

  13. Sun, J., Xiong, X., Wang, M., Du, H., Li, J., Zhou, D., Zuo, J.: Microalgae biodiesel production in China: a preliminary economic analysis. Renew. Sust. Energy Rev. 104, 296–306 (2019). https://doi.org/10.1016/j.rser.2019.01.021

    Article  Google Scholar 

  14. Ansari, F.A., Gupta, S.K., Nasr, M., Rawat, I., Bux, F.: Evaluation of various cell drying and disruption techniques for sustainable metabolite extractions from microalgae grown in wastewater: a multivariate approach. J. Clean. Prod. 182, 634–643 (2018). https://doi.org/10.1016/j.jclepro.2018.02.098

    Article  Google Scholar 

  15. Walls, L.E., Velasquez-Orta, S.B., Romero-Frasca, E., Leary, P., Noguez, I.Y., Ledesma, M.T.O.: Non-sterile heterotrophic cultivation of native wastewater yeast and microalgae for integrated municipal wastewater treatment and bioethanol production. Biochem. Eng. J. 151, 107319 (2019). https://doi.org/10.1016/j.bej.2019.107319

    Article  Google Scholar 

  16. Javed, F., Aslam, M., Rashid, N., Shamair, Z., Khan, A.L., Yasin, M., Fazal, T., Hafeez, A., Rehman, F., Rehman, M.S.U.: Microalgae-based biofuels, resource recovery and wastewater treatment: a pathway towards sustainable biorefinery. Fuel 255, 115826 (2019). https://doi.org/10.1016/j.fuel.2019.115826

    Article  Google Scholar 

  17. Katam, K., Bhattacharyya, D.: Simultaneous treatment of domestic wastewater and bio-lipid synthesis using immobilized and suspended cultures of microalgae and activated sludge. J. Ind. Eng. Chem. 69, 295–303 (2019). https://doi.org/10.1016/j.jiec.2018.09.031

    Article  Google Scholar 

  18. Srinuanpan, S., Cheirsilp, B., Prasertsan, P., Kato, Y., Asano, Y.: Photoautotrophic cultivation of oleaginous microalgae and co-pelletization with filamentous fungi for cost-effective harvesting process and improved lipid yield. Aquacult. Int. 26, 1493–1509 (2018). https://doi.org/10.1007/s10499-018-0300-0

    Article  Google Scholar 

  19. Chew, K.W., Chia, S.R., Show, P.L., Yap, Y.J., Ling, T.C., Chang, J.-S.: Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: a review. J. Taiwan Inst. Chem. E. 91, 332–344 (2018). https://doi.org/10.1016/j.jtice.2018.05.039

    Article  Google Scholar 

  20. Radakovits, R., Jinkerson, R.E., Darzins, A., Posewitz, M.C.: Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9(4), 486–501 (2010). https://doi.org/10.1128/EC.00364-09

    Article  Google Scholar 

  21. Qian, H., Xu, J., Lu, T., Zhang, Q., Qu, Q., Yang, Z., Pan, X.: Responses of unicellular alga Chlorella pyrenoidosa to allelochemical linoleic acid. Sci. Total Environ. 625, 1415–1422 (2018). https://doi.org/10.1016/j.scitotenv.2018.01.053

    Article  Google Scholar 

  22. Leyva, L.A., Bashan, Y., de Bashan, L.E.: Activity of acetyl-CoA carboxylase is not directly linked to accumulation of lipids when Chlorella vulgaris is co-immobilised with Azospirillum brasilense in alginate under autotrophic and heterotrophic conditions. Ann. Microbiol. 65, 339–349 (2015). https://doi.org/10.1007/s13213-014-0866-3

    Article  Google Scholar 

  23. Li, Y., Xu, H., Han, F., Mu, J., Chen, D., Feng, B., Zeng, H.: Regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy–photoinduction cultivation regime. Bioresour. Technol. 192, 781–791 (2015). https://doi.org/10.1016/j.biortech.2014.07.028

    Article  Google Scholar 

  24. Li, T., Gargouri, M., Feng, J., Park, J.-J., Gao, D., Miao, C., Dong, T., Gang, D.R., Chen, S.: Regulation of starch and lipid accumulation in a microalga Chlorella sorokiniana. Bioresour. Technol. 180, 250–257 (2015). https://doi.org/10.1016/j.biortech.2015.01.005

    Article  Google Scholar 

  25. Wang, L.B., Yu, H.Y., He, X.H., Liu, R.Y.: Influence of fatty acid composition of woody biodiesel plants on the fuel properties. J. Fuel Chem. Technol. 40(4), 397–404 (2012). https://doi.org/10.1016/S1872-5813(12)60018-8

    Article  Google Scholar 

  26. Guldhe, A., Singh, P., Kumari, S., Rawat, I., Permaul, K., Bux, F.: Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst. Renew. Energy 85, 1002–1010 (2016). https://doi.org/10.1016/j.renene.2015.07.059

    Article  Google Scholar 

  27. Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., Tredici, M.R.: Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102(1), 100–112 (2009). https://doi.org/10.1002/bit.22033

    Article  Google Scholar 

  28. Vidyashankar, S., Deviprasad, K., Chauhan, V., Ravishankar, G., Sarada, R.: Selection and evaluation of CO2 tolerant indigenous microalga Scenedesmus dimorphus for unsaturated fatty acid rich lipid production under different culture conditions. Bioresour. Technol. 144, 28–37 (2013). https://doi.org/10.1016/j.biortech.2013.06.054

    Article  Google Scholar 

  29. Kim, G., Mujtaba, G., Lee, K.: Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production. Algae 31(3), 257–266 (2016). https://doi.org/10.4490/algae.2016.31.8.18

    Article  Google Scholar 

  30. Thombare, N., Jha, U., Mishra, S., Siddiqui, M.Z.: Guar gum as a promising starting material for diverse applications: a review. Int. J. Biol. Macromol. 88, 361–372 (2016). https://doi.org/10.1016/j.ijbiomac.2016.04.001

    Article  Google Scholar 

  31. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., Darzins, A.: Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54(4), 621–639 (2008). https://doi.org/10.1111/j.1365-313X.2008.03492.x

    Article  Google Scholar 

  32. Vidyashankar, S., VenuGopal, K.S., Swarnalatha, G.V., Kavitha, M.D., Chauhan, V.S., Ravi, R., Bansal, A.K., Singh, R., Pande, A., Ravishankar, G.A.: Characterization of fatty acids and hydrocarbons of chlorophycean microalgae towards their use as biofuel source. Biomass Bioenergy Res. 77, 75–91 (2015). https://doi.org/10.1016/j.biombioe.2015.03.001

    Article  Google Scholar 

  33. Singh, B., Guldhe, A., Rawat, I., Bux, F.: Towards a sustainable approach for development of biodiesel from plant and microalgae. Renew. Sust. Energy Rev. 29, 216–245 (2014). https://doi.org/10.1016/j.rser.2013.08.067

    Article  Google Scholar 

  34. Singh, P., Kumari, S., Guldhe, A., Misra, R., Rawat, I., Bux, F.: Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renew. Sust. Energy Rev. 55, 1–16 (2016). https://doi.org/10.1016/j.rser.2015.11.001

    Article  Google Scholar 

  35. Ramos, M.J., Fernández, C.M., Casas, A., Rodríguez, L., Pérez, Á.: Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 100(1), 261–268 (2009). https://doi.org/10.1016/j.biortech.2008.06.039

    Article  Google Scholar 

  36. Shahid, A., Rehman, A.U., Usman, M., Ashraf, M.U.F., Javed, M.R., Khan, A.Z., Gill, S.S., Mehmood, M.A.: Engineering the metabolic pathways of lipid biosynthesis to develop robust microalgal strains for biodiesel production. Biotechnol. Appl. Biochem. 67(1), 41–51 (2019). https://doi.org/10.1002/bab.1812

    Article  Google Scholar 

  37. Li, D.-W., Xie, W.-H., Hao, T.-B., Cai, J.-X., Zhou, T.-B., Balamurugan, S., Yang, W.-D., Liu, J.-S., Li, H.-Y.: Constitutive and chloroplast targeted expression of acetyl-CoA carboxylase in oleaginous microalgae elevates fatty acid biosynthesis. Mar. Biotechnol. 20, 566–572 (2018). https://doi.org/10.1007/s10126-018-9841-5

    Article  Google Scholar 

  38. Liang, M.-H., Jiang, J.-G.: Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog. Lipid Res. 52(4), 395–408 (2013). https://doi.org/10.1016/j.plipres.2013.05.002

    Article  Google Scholar 

  39. Busi, M.V., Barchiesi, J., Martín, M., Gomez-Casati, D.F.: Starch metabolism in green algae. Starch 66(1–2), 28–40 (2014). https://doi.org/10.1002/star.201200211

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 51504192, 51904245), the Natural Science Basic Research Plan of Shaanxi Province (No. 2016JQ5102), the Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 17JK0616) and the Youth Talent Collection Program of Universities in Shaanxi (No. 20160119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Pan, J., Yan, M. et al. Comparative Treatment Efficiency and Fatty Acid Synthesis of Chlorella vulgaris: Immobilization Versus Co-cultivation. Waste Biomass Valor 12, 4399–4405 (2021). https://doi.org/10.1007/s12649-020-01326-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01326-5

Keywords

Navigation