Skip to main content
Log in

Composition, Functional Properties, Antioxidant Activity and Efficiency as Bacterial Growth Medium of Minced Tilapia (Oreochromis niloticus) Wash-Water

  • Short Communication
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The mechanical deboning of fish carcasses generates large volumes of water with proteins and other nutrients that are directly discarded. This study aimed to demonstrate the industrial value of minced tilapia wash-water (MTW-W) by determining its proximate composition and amino acid content, functional properties (solubility, foaming and emulsifying properties), antioxidant activity and potential as microbial growth medium. MTW-W showed a high crude protein content and a high content in essential amino acids for human and animal nutrition. A high protein diversity was detected in MTW-W by SDS-PAGE, including low-molecular-weight proteins that could serve as nitrogen source in bioprocesses. MTW-W demonstrated a high solubility in water and remarkable foaming properties over a wide pH range, but a limited emulsifying activity. A high antioxidant activity in terms of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging was also detected, probably due to the high content in hydrophobic amino acids and those containing sulphur. Moreover, MTW-W showed a high efficiency for the growth of Escherichia coli, Listeria monocytogenes and Staphylococcus aureus. Therefore, the present study demonstrated the potential of MTW-W as functional additive with antioxidant activity and nitrogen source in bioprocesses, which would increase the sustainability of the tilapia processing and reduce the environmental impact.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

All data and material used in this study can be provided by the corresponding author.

References

  1. FAO: FAO Yearbook. Fisheries and Aquaculture Statistics 2017. Food and Agriculture Organization of the United Nations, Rome (2019)

    Google Scholar 

  2. IBGE: Produção da Pecuária Municipal: Ministério do Planejamento, Desenvolvimento e Gestão. IBGE: Produção da Pecuária Municipal, Rio de Janeiro (2018)

    Google Scholar 

  3. Alkaya, E., Demirer, G.N.: Minimizing and adding value to seafood processing wastes. Food Bioprod. Process. 100, 195–202 (2016). https://doi.org/10.1016/j.fbp.2016.07.003

    Article  Google Scholar 

  4. Navarro-Peraza, R.S., Osuna-Ruíz, I., Lugo-Sánchez, M.E., Pacheco-Aguilar, R., Ramírez-Suárez, J.C., Burgos-Hernández, A., Martínez-Montaño, E., Salazar-Leyva, J.A.: Structural and biological properties of protein hydrolysates from seafood by-products: a review focused on fishery effluents. Food Sci. Technol. 40, 1–5 (2020). https://doi.org/10.1590/fst.24719

    Article  Google Scholar 

  5. Biscalchin-Grÿschek, S.F., Oetterer, M., Gallo, C.R.: Characterization and frozen storage stability of minced Nile tilapia (Oreochromis niloticus) and red tilapia (Oreochromis spp.). J. Aquat. Food Prod. Technol. 12, 57–69 (2003). https://doi.org/10.1300/J030v12n03_06

    Article  Google Scholar 

  6. Kirschnik, P.G., Macedo-Viegas, E.M.: Effect of washing and increase of additives on minced stability of Nile tilapia (Oreochromis niloticus) during storage under – 18 °C. Ciência e Tecnol. Aliment. 29, 200–206 (2009). https://doi.org/10.1590/S0101-20612009000100031

    Article  Google Scholar 

  7. Iwashita, K., Sumida, M., Shirota, K., Shiraki, K.: Recovery method for surimi wash-water protein by pH shift and heat treatment. Food Sci. Technol. Res. 22, 743–749 (2016). https://doi.org/10.3136/fstr.22.743

    Article  Google Scholar 

  8. Huang, L., Chen, Y., Morrissey, M.T.: Coagulation of fish proteins from frozen fish mince wash water by ohmic heating. J. Food Process. Eng. 20, 285–300 (1997)

    Article  Google Scholar 

  9. Khatprathum, A., Siriwongpaisaan, P., Youravong, W.: Concentration of proteinin fish mince wash water discharged from Surimi processing plant by ultrafiltration. Desalin. Water Treat. 21, 1–7 (2010). https://doi.org/10.5004/dwt.2010.1148

    Article  Google Scholar 

  10. Huidobro, A., Montero, P., Borderías, A.: Emulsifying properties of an ultrafiltered protein from minced fish wash water. Food Chem. 61, 339–343 (1998). https://doi.org/10.1016/S0308-8146(97)00064-2

    Article  Google Scholar 

  11. Martínez-Montaño, E., Osuna-Ruíz, I., Benítez-García, I., Osuna, C.O., Pacheco-Aguilar, R., Navarro-Peraza, R.S., Sánchez, M.E.L., Hernández, C., Spanopoulos-Hernández, M., Salazar-Leyva, J.A.: Biochemical and antioxidant properties of recovered solids with pH shift from fishery effluents (sardine stickwater and tuna cooking water). Waste Biomass Valoriz. (2020). https://doi.org/10.1007/s12649-020-01147-6

    Article  Google Scholar 

  12. Thorkelsson, G., Slizyte, R., Gildberg, A., Kristinsson, H.: Fish protein and peptide products: processing methods, quality and functional properties. In: Luten, J.B. (ed.) Marine Functional Food, pp. 115–134. Wageningen Academic Publishers, Wageningen (2009)

    Google Scholar 

  13. Halim, N.R.A., Yusof, H.M., Sarbon, N.M.: Functional and bioactive properties of fish protein hydolysates and peptides: a comprehensive review. Trends Food Sci. Technol. 51, 24–33 (2016). https://doi.org/10.1016/j.tifs.2016.02.007

    Article  Google Scholar 

  14. Pires, C., Clemente, T., Batista, I.: Functional and antioxidative properties of protein hydrolysates from Cape hake by-products prepared by three different methodologies. J. Sci. Food Agric. 93, 771–780 (2013). https://doi.org/10.1002/jsfa.5796

    Article  Google Scholar 

  15. Chalamaiah, M., Dinesh kumar, B., Hemalatha, R., Jyothirmayi, T.: Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chem. 135, 3020–3038 (2012). https://doi.org/10.1016/j.foodchem.2012.06.100

    Article  Google Scholar 

  16. Shamloo, M., Bakar, J., Hashim, D.M., Khatib, A.: Biochemical properties of red tilapia (Oreochromis niloticus) protein hydrolysates. Int. Food Res. J. 19, 183–188 (2012)

    Google Scholar 

  17. Foh, M.B.K., Amadou, I., Foh, B.M., Kamara, M.T., Xia, W.: Functionality and antioxidant properties of tilapia (Oreochromis niloticus) as influenced by the degree of hydrolysis. Int. J. Mol. Sci. 11, 1851–1869 (2010). https://doi.org/10.3390/ijms11041851

    Article  Google Scholar 

  18. Yarnpakdee, S., Benjakul, S., Kristinsson, H.G., Kishimura, H.: Antioxidant and sensory properties of protein hydrolysate derived from Nile tilapia (Oreochromis niloticus) by one- and two-step hydrolysis. J. Food Sci. Technol. 52, 3336–3349 (2014). https://doi.org/10.1007/s13197-014-1394-7

    Article  Google Scholar 

  19. Zhang, Y., Duan, X., Zhuang, Y.: Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) skin gelatin. Peptides 38, 13–21 (2012). https://doi.org/10.1016/j.peptides.2012.08.014

    Article  Google Scholar 

  20. Bernardi, D.M., de Paris, L.D., Dieterich, F., Silva, F.G.D., e, Boscolo, W.R., Sary, C., Signor, A., Bertol, T.M., Sgarbieri, V.C.: Production of hydrolysate from processed Nile tilapia (Oreochromis niloticus) residues and assessment of its antioxidant activity. Food Sci. Technol. 36, 709–716 (2016). https://doi.org/10.1590/1678-457x.15216

    Article  Google Scholar 

  21. Zamora-Sillero, J., Gharsallaoui, A., Prentice, C.: Peptides from fish by-product protein hydrolysates and its functional properties: an overview. Mar. Biotechnol. 20, 118–130 (2018). https://doi.org/10.1007/s10126-018-9799-3

    Article  Google Scholar 

  22. Aspmo, S.I., Horn, S.J., Eijsink, V.G.H.: Hydrolysates from Atlantic cod (Gadus morhua L.) viscera as components of microbial growth media. Process Biochem. 40, 3714–3722 (2005). https://doi.org/10.1016/j.procbio.2005.05.004

    Article  Google Scholar 

  23. Fallah, M., Bahram, S., Javadian, S.R.: Fish peptone development using enzymatic hydrolysis of silver carp by-products as a nitrogen source in Staphylococcus aureus media. Food Sci. Nutr. 3, 153–157 (2015). https://doi.org/10.1002/fsn3.198

    Article  Google Scholar 

  24. Klompong, V., Benjakul, S., Kantachote, D., Shahidi, F.: Use of protein hydrolysate from yellow stripe trevally (Selaroides leptolepis) as microbial media. Food Bioprocess. Technol. 5, 1317–1327 (2012). https://doi.org/10.1007/s11947-010-0402-9

    Article  Google Scholar 

  25. Safari, R., Motamedzadegan, A., Ovissipour, M., Regenstein, J.M., Gildberg, A., Rasco, B.: Use of hydrolysates from yellowfin tuna (Thunnus albacares) heads as a complex nitrogen source for lactic acid bacteria. Food Bioprocess. Technol. 5, 73–79 (2012). https://doi.org/10.1007/s11947-009-0225-8

    Article  Google Scholar 

  26. Vieira, G.H., Vieira, R.H.S.F., Macrae, A., Sousa, O.V.: Peptone preparation from fishing by-products. J. Sci. Food Agric. 85, 1235–1237 (2005). https://doi.org/10.1002/jsfa.2161

    Article  Google Scholar 

  27. Deraz, S.F., El-Fawal, G.F., Abd-Ellatif, S.A., Khalil, A.A.: Autohydrolysed Tilapia nilotica fish viscera as a peptone source in bacteriocin production. Indian J. Microbiol. 51, 171–175 (2011). https://doi.org/10.1007/s12088-011-0119-0

    Article  Google Scholar 

  28. Shirahigue, L.D., Ribeiro, I.S., Sucasas, L.F., de Anbe, A., Vaz-Pires, L., Oetterer, P.: Peptones in silage from tilapia (Oreochromis niloticus) and cobia (Rachycentron canadum) waste as a culture medium for bioprocesses. J. Aquat. Food Prod. Technol. 27, 712–721 (2018). https://doi.org/10.1080/10498850.2018.1484830

    Article  Google Scholar 

  29. AOAC: Official Methods of Analysis of AOAC International. AOAC International, Gaithersburg (2016)

    Google Scholar 

  30. White, J.A., Hart, R.J., Fry, J.C.: An evaluation of the Waters Pico-Tag system for the amino-acid analysis of food materials. J. Automat. Chem. 8, 170–177 (1986). https://doi.org/10.1155/S1463924686000330

    Article  Google Scholar 

  31. Hagen, S.R., Frost, B., Augustin, J.: Precolumn phenylisothiocyanate derivatization and liquid chromatography of amino acids in food. J. Assoc. Off. Anal. Chem. 72, 912–916 (1989). https://doi.org/10.1093/jaoac/72.6.912

    Article  Google Scholar 

  32. Lucas, B., Sotelo, A.: Effect of different alkalies, temperature, and hydrolysis times on tryptophan determination of pure proteins and of foods. Anal. Biochem. 109, 192–197 (1980). https://doi.org/10.1016/0003-2697(80)90028-7

    Article  Google Scholar 

  33. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976). https://doi.org/10.1016/0003-2697(76)90527-3

    Article  Google Scholar 

  34. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970). https://doi.org/10.1038/227680a0

    Article  Google Scholar 

  35. Klompong, V., Benjakul, S., Kantachote, D., Shahidi, F.: Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem. 102, 1317–1327 (2007). https://doi.org/10.1016/j.foodchem.2006.07.016

    Article  Google Scholar 

  36. Noman, A., Xu, Y., AL-Bukhaiti, W.Q., Abed, S.M., Ali, A.H., Ramadhan, A.H., Xia, W.: Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon (Acipenser sinensis) by using papain enzyme. Process. Biochem. 67, 19–28 (2018). https://doi.org/10.1016/j.procbio.2018.01.009

    Article  Google Scholar 

  37. Thiansilakul, Y., Benjakul, S., Shahidi, F.: Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chem. 103, 1385–1394 (2007). https://doi.org/10.1016/j.foodchem.2006.10.055

    Article  Google Scholar 

  38. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C.: Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  Google Scholar 

  39. Brand-Williams, W., Cuvelier, M.E., Berset, C.: Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 28, 25–30 (1995). https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  Google Scholar 

  40. Zwietering, M.H., Jongenburger, I., Rombouts, F.M., Riet, K.: Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56, 1875–1881 (1990)

    Article  Google Scholar 

  41. Bechtel, P.J.: Properties of stickwater from fish processing byproducts. J. Aquat. Food Prod. Technol. 14, 25–38 (2005). https://doi.org/10.1300/J030v14n02_03

    Article  Google Scholar 

  42. Poernomo, A., Buckle, K.A.: Crude peptones from cowtail ray (Trygon sephen) viscera as microbial growth media. World J. Microbiol. Biotechnol. 18, 337–344 (2002). https://doi.org/10.1023/A:1015208519709

    Article  Google Scholar 

  43. Taşbozan, O., Özcan, F., Erbaş, C., Ündağ, E., Atıcı, A., Adaklı, A.: Determination of proximate and amino acid composition of five different tilapia species from the Cukurova region (Turkey). J. Appl. Biol. Sci. 7, 17–22 (2013)

    Google Scholar 

  44. Foh, M.B.K., Kamara, M.T., Amadou, I., Foh, B.M., Wenshui, X.: Chemical and physicochemical properties of tilapia (Oreochromis niloticus) fish protein hydrolysate and concentrate. Int. J. Biol. Chem. 5, 21–36 (2011). https://doi.org/10.3923/ijbc.2011.21.36

    Article  Google Scholar 

  45. Neves, R.A.M., de Mira, N.V.M., Marquez, U.M.L.: Caracterização de hidrolisados enzimáticos de pescado. Ciência e Tecnol. Aliment. 24, 101–108 (2004). https://doi.org/10.1590/S0101-20612004000100019

    Article  Google Scholar 

  46. Silva, J.F.X., Ribeiro, K., Silva, J.F., Cahú, T.B., Bezerra, R.S.: Utilization of tilapia processing waste for the production of fish protein hydrolysate. Anim. Feed Sci. Technol. 196, 96–106 (2014). https://doi.org/10.1016/j.anifeedsci.2014.06.010

    Article  Google Scholar 

  47. Nalinanon, S., Benjakul, S., Kishimura, H., Shahidi, F.: Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chem. 124, 1354–1362 (2011). https://doi.org/10.1016/j.foodchem.2010.07.089

    Article  Google Scholar 

  48. Pearce, K.N., Kinsella, J.E.: Emulsifying properties of proteins: evaluation of a turbidimetric technique. J. Agric. Food Chem. 26, 716–723 (1978). https://doi.org/10.1021/jf60217a041

    Article  Google Scholar 

  49. Lawal, O.S.: Functionality of African locust bean (Parkia biglobossa) protein isolate: effects of pH, ionic strength and various protein concentrations. Food Chem. 86, 345–355 (2004). https://doi.org/10.1016/j.foodchem.2003.09.036

    Article  Google Scholar 

  50. Khaled, H.B., Ktari, N., Ghorbel-Bellaaj, O., Jridi, M., Lassoued, I., Nasri, M.: Composition, functional properties and in vitro antioxidant activity of protein hydrolysates prepared from sardinelle (Sardinella aurita) muscle. J. Food Sci. Technol. 51, 622–633 (2014). https://doi.org/10.1007/s13197-011-0544-4

    Article  Google Scholar 

  51. Samaranayaka, A.G.P., Li-Chan, E.C.Y.: Autolysis-assisted production of fish protein hydrolysates with antioxidant properties from Pacific hake (Merluccius productus). Food Chem. 107, 768–776 (2008). https://doi.org/10.1016/j.foodchem.2007.08.076

    Article  Google Scholar 

  52. Boulebd, H.: Comparative study of the radical scavenging behavior of ascorbic acid, BHT, BHA and Trolox: Experimental and theoretical study. J. Mol. Struct. 1201, 127210 (2020). https://doi.org/10.1016/j.molstruc.2019.127210

    Article  Google Scholar 

Download references

Funding

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES) under Grant Finance Code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)—Grant No. PDJ 151338/2019-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Vázquez-Sánchez.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez-Sánchez, D., Leite, S.B.P., Galvão, J.A. et al. Composition, Functional Properties, Antioxidant Activity and Efficiency as Bacterial Growth Medium of Minced Tilapia (Oreochromis niloticus) Wash-Water. Waste Biomass Valor 12, 4375–4386 (2021). https://doi.org/10.1007/s12649-020-01324-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01324-7

Keywords

Navigation