Skip to main content
Log in

Selection of the best fit probability distributions for temperature data and the use of L-moment ratio diagram method: a case study for NSW in Australia

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This paper explores different goodness-of-fit (GOF) criteria’s used in the various fields of science to compare candidate probability density functions (pdfs) to annual maximum temperature records and discusses their usefulness and drawbacks. The L-moment ratio diagram method is also proposed as alternative approach for the GOF of the pdfs. The advantage this method allows for an easy comparison of the fit of many pdfs for several stations on a single diagram. To gain knowledge about higher order moments (i.e. shape, skewness and kurtosis) of the station data set, plotting the position of a given temperature data set in L-moment ratio diagram space is prompt and effective and can provide a useful addition to the GOF criterion. Both the L-moment ratio diagrams and many GOF criteria are used on real data to assess the fit of the pdfs for temperature data in the state of New South Wales, Australia. The analysis of the L-moment ratio diagrams reveals that the generalized extreme value and normal distributions generally fit best the annual maximum temperature series. The other two- and three-parameter distributions also showed viable fits in some instances. Results obtained from L-moment diagrams, temperature frequency histograms, cumulative density plots and the simulation study are compared with those obtained from GOF statistics, and a good agreement is generally observed between all these approaches. In conclusion the L-moment ratio diagram can represent a simple, effective and efficient approach to be used as a complementary method along with the traditional GOF criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. Pp. 267–281 in 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, USSR, September 2–8, 1971, eds. BN Petrov and F. Csáki. Budapest: Akadémiai Kiadó. Bankevich, A., S. Nurk, D. Antipov, AA Gurevich, M. Dvorkin, AS Kulikov, VM Lesin, et al. 2012. SPAdes: A new genome assembly algorithm and its applications to single. Systematics and Evolution of the Arundinoideae and Micrairoideae (Poaceae), 18(1), p.139

  • Alexander LV, Hope P, Collins D, Trewin B, Lynch A, Nicholls N (2007) Trends in Australia’s climate means and extremes: a global context. Aust Meteorol Mag 56(1):1–18

    Google Scholar 

  • Alexander LV, Arblaster JM (2009) Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. Int J Climatol 29(3):417–435

    Article  Google Scholar 

  • Anderson TW, Darling DA (1954) A test of goodness of fit. J Am Stat Assoc 49(268):765–769

    Article  Google Scholar 

  • Ando T (2010) Bayesian model selection and statistical modeling. CRC Press

  • Best DJ, Rayner JC (2007) Chi-squared components for tests of fit and improved models for the grouped exponential distribution. Comput Stat Data Anal 51(8):3946–3954

    Article  Google Scholar 

  • Best DJ, Rayner JC, Thas O (2008) Comparison of some tests of fit for the Laplace distribution. Comput Stat Data Anal 52(12):5338–5343

    Article  Google Scholar 

  • Cannon AJ (2010) A flexible nonlinear modelling framework for nonstationary generalized extreme value analysis in hydroclimatology. Hydrol Process: Int J 24(6):673–685

    Article  Google Scholar 

  • Charalampopoulos I (2019) A comparative sensitivity analysis of human thermal comfort indices with generalized additive models. Theor Appl Climatol 137(1–2):1605–1622

    Article  Google Scholar 

  • Chavas JP, Di Falco S, Adinolfi F, Capitanio F (2019) Weather effects and their long-term impact on the distribution of agricultural yields: evidence from Italy. Eur Rev Agric Econ 46(1):29–51

    Article  Google Scholar 

  • Chebana F, Ouarda TB (2009) Index flood-based multivariate regional frequency analysis. Water Resour Res 45(10)

  • Chebana F, Ouarda TB (2007) Multivariate L-moment homogeneity test. Water Resour Res 43(8)

  • CSIRO State of the climate report 2018, https://www.csiro.au/en/Showcase/state-of-the-climate

  • Cunnane C (1978) Unbiased plotting positions—a review. J Hydrol 37(3–4):205–222

    Article  Google Scholar 

  • Cunnane C (1989) Statistical distributions for flood frequency analysis. Operational hydrology report (WMO)

  • Dehghan Z, Eslamian SS, Fathian F, Modarres R (2019) Regional frequency analysis with development of region-of-influence approach for maximum 24-h rainfall (case study: Urmia Lake Basin, Iran). Theor Appl Climatol 136(3–4):1483–1494

    Article  Google Scholar 

  • Di Baldassarre G, Laio F, Montanari A (2009) Design flood estimation using model selection criteria. Phys Chem Earth, Parts A/B/C 34(10–12):606–611

  • Drew JH, Glen AG, Leemis LM (2000) Computing the cumulative distribution function of the Kolmogorov–Smirnov statistic. Comput Stat Data Anal 34(1):1–15

    Article  Google Scholar 

  • Dueñas C, Fernández MC, Cañete S, Carretero J, Liger E (2002) Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean coast. Sci Total Environ 299(1–3):97–113

    Article  Google Scholar 

  • Eslamian S, Hassanzadeh H, Abedi-Koupai J, Gheysari M (2012) Application of L-moments for regional frequency analysis of monthly drought indexes. J Hydrol Eng 17(1):32–42

    Article  Google Scholar 

  • Fallah-Ghalhari G, Shakeri F, Dadashi-Roudbari A (2019) Impacts of climate changes on the maximum and minimum temperature in Iran. Theor Appl Climatol 138(3–4):1539–1562

    Article  Google Scholar 

  • Faragó T and Katz RW (1990) Extremes and design values in climatology. World Meteorological Organization (WMO)

  • Fischer T, Su B, Luo Y, Scholten T (2012) Probability distribution of precipitation extremes for weather index-based insurance in the Zhujiang River basin, South China. J Hydrometeorol 13(3):1023–1037

    Article  Google Scholar 

  • Fishman R, Carrillo P, Russ J (2019) Long-term impacts of exposure to high temperatures on human capital and economic productivity. J Environ Econ Manag 93:221–238

    Article  Google Scholar 

  • Gerson M (1975) The techniques and uses of probability plotting. J Roy Stat Soc Ser D (The Statistician) 24(4):235–257

    Google Scholar 

  • Greenwood JA, Landwehr JM, Matalas NC, Wallis JR (1979) Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form. Water Resour Res 15(5):1049–1054

    Article  Google Scholar 

  • Guo SL (1990) A discussion on unbiased plotting positions for the general extreme value distribution. J Hydrol 121(1–4):33–44

    Article  Google Scholar 

  • Haddad K, Rahman A (2011) Selection of the best fit flood frequency distribution and parameter estimation procedure: a case study for Tasmania in Australia. Stoch Env Res Risk A 25(3):415–428

    Article  Google Scholar 

  • Haddad K, Rahman A (2012) Regional flood frequency analysis in eastern Australia: Bayesian GLS regression-based methods within fixed region and ROI framework–quantile regression vs. parameter regression technique. J Hydrol 430:142–161

    Article  Google Scholar 

  • Haddad K, Rahman A (2020) Regional flood frequency analysis: evaluation of regions in cluster space using support vector regression. Nat Hazards 102(1):489–517

  • Haddad K, Rahman A, Green J (2011) Design rainfall estimation in Australia: a case study using L moments and generalized least squares regression. Stoch Env Res Risk A 25(6):815–825

    Article  Google Scholar 

  • Haddad K, Rahman A, Zaman MA, Shrestha S (2013) Applicability of Monte Carlo cross validation technique for model development and validation using generalised least squares regression. J Hydrol 482:119–128

    Article  Google Scholar 

  • Haddad K, Johnson F, Rahman A, Green J, Kuczera G (2015) Comparing three methods to form regions for design rainfall statistics: two case studies in Australia. J Hydrol 527:62–76

    Article  Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extrem 10:4–10

    Article  Google Scholar 

  • Hosking JR (1990) L-moments: analysis and estimation of distributions using linear combinations of order statistics. J R Stat Soc Ser B Methodol 52(1):105–124

    Google Scholar 

  • Hosking JRM, Wallis JR (2005) Regional frequency analysis: an approach based on L-moments. Cambridge University Press

  • Hossian MM, Abdulla F, Rahman MH (2016) Selecting the probability distribution of monthly maximum temperature of Dhaka (capital city) in Bangladesh. Jahangirnagar University Journal of Statistical Studies 33:33–45

    Google Scholar 

  • Huth R, Kyselý J, Pokorná L (2000) A GCM simulation of heat waves, dry spells, and their relationships to circulation. Clim Chang 46(1–2):29–60

    Article  Google Scholar 

  • Jakob D, Walland D (2016) Variability and long-term change in Australian temperature and precipitation extremes. Weather Clim Extrem 14:36–55

    Article  Google Scholar 

  • Katz RW, Brown BG (1992) Extreme events in a changing climate: variability is more important than averages. Clim Chang 21(3):289–302

    Article  Google Scholar 

  • Kestin TS (2000) Variations of Australian climate and extremes (Doctoral dissertation, Monash University)

  • Khaliq MN, St-Hilaire A, Ouarda TBMJ, Bobée B (2005) Frequency analysis and temporal pattern of occurrences of southern Quebec heatwaves. Int J Climatol 25(4):485–504

    Article  Google Scholar 

  • Kharin VV, Zwiers FW (2000) Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere–ocean GCM. J Clim 13(21):3760–3788

    Article  Google Scholar 

  • King AD, Karoly DJ, Henley BJ (2017) Australian climate extremes at 1.5 C and 2 C of global warming. Nat Clim Chang 7(6):412–416

  • Laio F, Di Baldassarre G, Montanari A (2009) Model selection techniques for the frequency analysis of hydrological extremes. Water Resour Res 45(7)

  • Lazoglou G, Anagnostopoulou C, Tolika K, Kolyva-Machera F (2019) A review of statistical methods to analyze extreme precipitation and temperature events in the Mediterranean region. Theor Appl Climatol 136(1–2):99–117

    Article  Google Scholar 

  • Lee XJ, Hainy M, McKeone JP, Drovandi CC, Pettitt AN (2018) ABC model selection for spatial extremes models applied to South Australian maximum temperature data. Comput Stat Data Anal 128:128–144

    Article  Google Scholar 

  • Loikith PC, Broccoli AJ (2014) The influence of recurrent modes of climate variability on the occurrence of winter and summer extreme temperatures over North America. J Clim 27(4):1600–1618

    Article  Google Scholar 

  • Luceño A (2006) Fitting the generalized Pareto distribution to data using maximum goodness-of-fit estimators. Comput Stat Data Anal 51(2):904–917

    Article  Google Scholar 

  • Madsen H, Mikkelsen PS, Rosbjerg D, Harremoës P (2002) Regional estimation of rainfall intensity-duration-frequency curves using generalized least squares regression of partial duration series statistics. Water Resour Res 38(11):21–21

    Article  Google Scholar 

  • Malekinezhad H, Nachtnebel HP, Klik A (2011) Comparing the index-flood and multiple-regression methods using L-moments. Physics and Chemistry of the Earth, Parts A/B/C 36(1–4):54–60

    Article  Google Scholar 

  • Mandal S, Choudhury BU (2015) Estimation and prediction of maximum daily rainfall at Sagar Island using best fit probability models. Theor Appl Climatol 121(1–2):87–97

    Article  Google Scholar 

  • Mearns LO, Katz RW, Schneider SH (1984) Extreme high-temperature events: changes in their probabilities with changes in mean temperature. J Clim Appl Meteorol 23(12):1601–1613

    Article  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305(5686):994–997

    Article  Google Scholar 

  • Meehl GA, Tebaldi C, Teng H, Peterson TC (2007) Current and future US weather extremes and El Niño. Geophys Res Lett 34(20)

  • Meehl GA, Tebaldi C, Walton G, Easterling D, McDaniel L (2009) Relative increase of record high maximum temperatures compared to record low minimum temperatures in the US. Geophys Res Lett 36(23)

  • Meshgi A, Khalili D (2009) Comprehensive evaluation of regional flood frequency analysis by L-and LH-moments. I. A re-visit to regional homogeneity. Stoch Env Res Risk A 23(1):119–135

    Article  Google Scholar 

  • Nagatsuka H, Kamakura T, Balakrishnan N (2013) A consistent method of estimation for the three-parameter Weibull distribution. Comput Stat Data Anal 58:210–226

    Article  Google Scholar 

  • Nastos PT, Matzarakis A (2012) The effect of air temperature and human thermal indices on mortality in Athens, Greece. Theor Appl Climatol 108(3–4):591–599

    Article  Google Scholar 

  • Nemukula MM, Sigauke C (2018) Modelling average maximum daily temperature using r largest order statistics: an application to South African data. Jàmbá: Journal of Disaster Risk Studies 10(1):1–11

    Article  Google Scholar 

  • Núñez-Galeano L, Giraldo-Osorio JD (2016) Adaptation of the L-moments method for the regionalization for maximum annual temperatures in Colombia. Ing Univ 20(2):373–389

    Google Scholar 

  • Ouarda TB, Charron C (2018) Nonstationary temperature-duration-frequency curves. Sci Rep 8(1):1–8

    Article  Google Scholar 

  • Ouarda TB, Charron C, Chebana F (2016) Review of criteria for the selection of probability distributions for wind speed data and introduction of the moment and L-moment ratio diagram methods, with a case study. Energy Convers Manag 124:247–265

    Article  Google Scholar 

  • Ouarda TB, Charron C, Shin JY, Marpu PR, Al-Mandoos AH, Al-Tamimi MH, Ghedira H, Al Hosary TN (2015) Probability distributions of wind speed in the UAE. Energy Convers Manag 93:414–434

    Article  Google Scholar 

  • Parey S, Hoang TTH, Dacunha-Castelle D (2010) Different ways to compute temperature return levels in the climate change context. Environmetrics 21(7–8):698–718

    Article  Google Scholar 

  • Perkins SE, Alexander LV, Nairn JR (2012) Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys Res Lett 39(20)

  • Peel MC, Wang QJ, Vogel RM, McMAHON TA (2001) The utility of L-moment ratio diagrams for selecting a regional probability distribution. Hydrol Sci J 46(1):147–155

    Article  Google Scholar 

  • Pishgar-Komleh SH, Keyhani A, Sefeedpari P (2015) Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran). Renew Sust Energ Rev 42:313–322

    Article  Google Scholar 

  • Potop V (2011) Evolution of drought severity and its impact on corn in the Republic of Moldova. Theor Appl Climatol 105(3–4):469–483

    Article  Google Scholar 

  • Rahman AS, Rahman A, Zaman MA, Haddad K, Ahsan A, Imteaz M (2013) A study on selection of probability distributions for at-site flood frequency analysis in Australia. Nat Hazards 69(3):1803–1813

    Article  Google Scholar 

  • Rainham DG, Smoyer-Tomic KE (2003) The role of air pollution in the relationship between a heat stress index and human mortality in Toronto. Environ Res 93(1):9–19

    Article  Google Scholar 

  • Rao AR, Hamed KH (2000) Flood frequency analysis. CRC Press, New York

    Google Scholar 

  • Rekabdarkolaee HM, Boone E, Wang Q (2017) Robust estimation and variable selection in sufficient dimension reduction. Comput Stat Data Anal 108:146–157

    Article  Google Scholar 

  • Rydén J (2019) A note on analysis of extreme minimum temperatures with the GAMLSS framework. Acta Geophysica 67(6):1599–1604

    Article  Google Scholar 

  • Saf B (2009) Regional flood frequency analysis using L-moments for the West Mediterranean region of Turkey. Water Resour Manag 23(3):531–551

    Article  Google Scholar 

  • Saray MH, Eslamian SS, Klöve B and Gohari A (2019) Regionalization of potential evapotranspiration using a modified region of influence. Theor Appl Climatol, pp.1-13

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller Jr. HL, and Chen Z, Eds., (2007) Climate change 2007: the physical science basis. Cambridge University Press, 996 pp.

  • Soukissian T (2013) Use of multi-parameter distributions for offshore wind speed modeling: the Johnson SB distribution. Appl Energy 111:982–1000

    Article  Google Scholar 

  • Subak S, Palutikof JP, Agnew MD, Watson SJ, Bentham CG, Cannell MGR, Hulme M, McNally S, Thornes JE, Waughray D, Woods JC (2000) The impact of the anomalous weather of 1995 on the UK economy. Clim Chang 44(1–2):1–26

    Article  Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes. Clim Chang 79(3–4):185–211

    Article  Google Scholar 

  • Torsen E, Akinrefon AA, Rueben BZ, Mbaga YV (2015) Probability distribution of maximum temperature in Adamawa State, Nigeria. Journal of Mathematics (IOSR-JM) 11(4):1–6

  • Trewin B (2001) Extreme temperature events in Australia. Doctoral dissertation, The University of Melbourne

    Google Scholar 

  • Trewin B, Vermont H (2010) Changes in the frequency of record temperatures in Australia, 1957–2009. Aust Meteorol Oceanogr J 60:113–119

    Article  Google Scholar 

  • Trewin B (2018) The Australian Climate Observations Reference Network-Surface Air Temperature (ACORNSAT) Version 2. Bureau of Meteorology

  • Tuller SE, Brett AC (1985) The goodness of fit of the Weibull and Rayleigh distributions to the distributions of observed wind speeds in a topographically diverse area. J Climatol 5(1):79–94

    Article  Google Scholar 

  • Vivekanandan N (2018) Comparison of probability distributions in extreme value analysis of rainfall and temperature data. Environ Earth Sci 77(5):201

    Article  Google Scholar 

  • Vogel RM, Fennessey NM (1993) L moment diagrams should replace product moment diagrams. Water Resour Res 29(6):1745–1752

    Article  Google Scholar 

  • Wang ZL, Wang JS, Li YH, Wang CH (2013) Comparison of application between generalized extreme value index and Standardized Precipitation Index in Northwest China. Plateau Meteorol 32:839–847

    Google Scholar 

  • Woods DC, McGree JM, Lewis SM (2017) Model selection via Bayesian information capacity designs for generalised linear models. Comput Stat Data Anal 113:226–238

    Article  Google Scholar 

  • Xiao Y (2017) A fast algorithm for two-dimensional Kolmogorov–Smirnov two sample tests. Comput Stat Data Anal 105:53–58

    Article  Google Scholar 

  • Zaman MA, Rahman A, Haddad K (2012) Regional flood frequency analysis in arid regions: a case study for Australia. J Hydrol 475:74–83

    Article  Google Scholar 

  • Zhang J, Li TT, Tan JG, Huang CR, Kan HD (2014) Impact of temperature on mortality in three major Chinese cities. Biomed Environ Sci 27(7):485–494

    Google Scholar 

  • Zhou J, Erdem E, Li G, Shi J (2010) Comprehensive evaluation of wind speed distribution models: a case study for North Dakota sites. Energy Convers Manag 51(7):1449–1458

    Article  Google Scholar 

  • Zin WZW, Jemain AA, Ibrahim K (2009) The best fitting distribution of annual maximum rainfall in Peninsular Malaysia based on methods of L-moment and LQ-moment. Theor Appl Climatol 96(3–4):337–344

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the Bureau of Meteorology, Australia, for their website where the data for this study was obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Haddad.

Ethics declarations

Competing interests

The author declares that he has no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Fig. 9
figure 9

Temperature frequency histogram and CDF plot for station Bathurst. a Two-parameter distribution. b Three-parameter distribution

Fig. 10
figure 10

Temperature frequency histogram and CDF plot for station Parramatta. a Two-parameter distribution. b Three-parameter distribution

Fig. 11
figure 11

Temperature frequency histogram and CDF plot for station Sydney. a Two-parameter distribution. b Three-parameter distribution

Fig. 12
figure 12

Temperature frequency histogram and CDF plot for station Liverpool. a Two-parameter distribution. b Three-parameter distribution

Fig. 13
figure 13

Temperature frequency histogram and CDF plot for station Wollongong. a Two-parameter distribution. b Three-parameter distribution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddad, K. Selection of the best fit probability distributions for temperature data and the use of L-moment ratio diagram method: a case study for NSW in Australia. Theor Appl Climatol 143, 1261–1284 (2021). https://doi.org/10.1007/s00704-020-03455-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-020-03455-2

Navigation