Skip to main content
Log in

Steady Euler Flows on the 3-Sphere and Other Sasakian 3-Manifolds

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We present new steady Euler solutions on the (round) 3-sphere, that bifurcate from an ansatz proposed in [11], showing that these previously known solutions are not isolated. We also extend this ansatz to any Sasakian 3-manifold, such as the Heisenberg group and \(SL(2, \mathbb {R})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here by pull-back of a vector field X through some mapping \(\varphi \) we mean \((\varphi ^* X^\flat )^\sharp \) and the pull-back of a function f on the codomain is \(f\circ \varphi \) defined on the domain of \(\varphi \).

References

  1. Arnold, V.I., Khesin, B.: Topological Methods in Hydrodynamics. Springer, New York (1998)

    Book  Google Scholar 

  2. Baird P.: Harmonic maps with symmetry, harmonic morphisms and deformations of metrics. Research Notes in Mathematics, vol. 87, Pitman, Boston (1983)

  3. Belgun, F.: Normal CR structures on compact 3-manifolds. Math. Z. 238, 441–460 (2001)

    Article  MathSciNet  Google Scholar 

  4. Belgun, F.: Normal CR structures on \({\mathbb{S}}^3\). Math. Z. 244, 125–151 (2003)

    Article  MathSciNet  Google Scholar 

  5. Boyer, C.P., Galicki, K.: Sasakian Geometry. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  6. Cartan, E.: Familles de surfaces isoparamétriques dans les espaces a courbure constante. Ann. Mat. Pura Appl. 17, 177–191 (1938)

    Article  MathSciNet  Google Scholar 

  7. Constantin P., Joonhyun La, and Vicol, V.: Remarks on a paper by Gavrilov: Grad-Shafranov equations, steady solutions of the three dimensional incompressible Euler equations with compactly supported velocities, and applications, Geom. Funct. Anal. 29, 1773–1793 (2019)

  8. Enciso A., Peralta-Salas, D., and Torres de Lizaur, F.: Knotted structures in high-energy Beltrami fields on the torus and the sphere. Ann. Sci. Éc. Norm. Sup 50, 995–1016 (2017)

  9. Gavrilov A. V.: A steady smooth Euler flow with support in the vicinity of a helix, preprint arXiv:1906.07465 (2019)

  10. Geiges, H.: Normal contact structures on 3-manifolds. Tohoku Math. J. 49, 415–422 (1997)

    Article  MathSciNet  Google Scholar 

  11. Khesin, B., Kuksin, S., Peralta-Salas, D.: KAM theory and the 3D Euler equation. Adv. Math. 267, 498–522 (2014)

    Article  MathSciNet  Google Scholar 

  12. Khesin, B., Kuksin, S., Peralta-Salas, D.: Global, Local and Dense Non-mixing of the 3D Euler Equation. Arch. Rational Mech. Anal. 238, 1087–1112 (2020). https://doi.org/10.1007/s00205-020-01556-w

    Article  MathSciNet  MATH  Google Scholar 

  13. Komendarczyk, R.: Tight Beltrami fields with symmetry. Geom. Dedicata. 134, 217–238 (2008)

    Article  MathSciNet  Google Scholar 

  14. Münzner, H.F.: Isoparametrische Hyperflächen in Sphären. Math. Ann. 251, 57–71 (1980)

    Article  MathSciNet  Google Scholar 

  15. Münzner H. F.: Isoparametrische Hyperflächen in Sphären II. Über die Zerlegung der Sphäre in Ballbündel, Math. Ann. 256, 215–232 (1981)

  16. Nomizu, K.: Elie Cartan’s work on isoparametric families of hypersurfaces. Proc. Symp. Pure Math. 27, 191–200 (1975)

    Article  Google Scholar 

  17. Peralta-Salas, D.: Selected topics on the topology of ideal fluid flows. Int. J. Geom. Methods Mod. Phys. 13, 1630012 (2016)

    Article  MathSciNet  Google Scholar 

  18. Peralta-Salas, D., Slobodeanu, R.: Energy minimizing Beltrami fields on Sasakian \(3\)-manifolds. Int. Math. Res. Not. (2019). https://doi.org/10.1093/imrn/rnz044

    Article  Google Scholar 

  19. Peralta-Salas, D., and Slobodeanu, R.: Contact structures and Beltrami fields on the torus and the sphere, preprint (2020), arXiv:2004.10185 [math.DG]

  20. Slobodeanu R.: Steady Euler flows and the Faddeev-Skyrme model with mass term, J. Math. Phys. 56 (2015): 023102; arXiv:1405.3469v3 [math.DG]

  21. Slobodeanu R.: A steady Euler flow on the \(3\)-sphere and its associated Faddeev-Skyrme solution, Rev. Roumaine Math. Pures Appl. 65 (2020), 355–367. arXiv:1909.09054 [math.DG]

  22. Thorbergsson, G.: A Survey on Isoparametric Hypersurfaces and their Generalizations, in Handbook of Differential Geometry, vol. I, pp. 963–995. North-Holland, Amsterdam (2000)

    MATH  Google Scholar 

  23. Wang, Qi-Ming, Isoparametric functions on Riemannian manifolds. I, Math. Ann. 277 (1987), 639 – 646

  24. Wolfram Research, Inc., Mathematica, Version 11.2, Champaign, IL (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Slobodeanu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author is grateful to the anonymous referee for many valuable comments that improved the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slobodeanu, R. Steady Euler Flows on the 3-Sphere and Other Sasakian 3-Manifolds. Qual. Theory Dyn. Syst. 20, 5 (2021). https://doi.org/10.1007/s12346-020-00440-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-020-00440-y

Keywords

Mathematics Subject Classification

Navigation