Skip to main content

Advertisement

Log in

Late Quaternary vegetation and climate of SE Europe–NW Asia according to pollen records in three offshore cores from the Black and Marmara seas

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

High-resolution pollen analyses were performed on two cores from the western Black Sea and one core from the Marmara Sea, covering the Late Glacial-Holocene transition using 14C chronology. Particular effort was invested in the botanical identification of pollen grains thereby significantly improving our knowledge of regional flora. When interpreted with respect to modern vegetation, pollen records revealed all the major changes caused by climatic fluctuations over the last 20,000 years. The results of this study provide evidence for the occurrence of relict thermophilous-hygrophilous trees (papillate Cupressaceae, Carya, Liquidambar, Zelkova) in certain refugia up to the Holocene. Vegetation dynamics is specified for some taxa (e.g. Cupressus–Juniperus, Fagus, Cedrus) and some ecosystems (e.g. mesophilous forests, Mediterranean sclerophyllous populations, steppes). Pollen data enabled palaeoclimatic reconstructions which were compared with available estimates in the region. The use of a powerful pollen ratio between ‘thermophilous and steppe taxa’ led to fruitful climatostratigraphic relationships with the oxygen isotope curve from the NGRIP core. The Younger Dryas and cooling at 8.2 ka are among the most obvious climatic phases identified in the three cores studied here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. All the depths provided in the paper are in centimetres below the sea floor.

References

  • Aksu, A. E., Hiscott, R. N., Kaminski, M. A., Mudie, P. J., Gilleptie, H., Abrajano, T., & Yašar, D. (2002). Late Glacial–Holocene paleoceanography of the Black Sea and Marmara Sea: stable isotopic, foraminiferal and coccolith evidence. Marine Geology, 190, 119–149.

    Google Scholar 

  • Algan, O., Gazioğlu, C., Çağatay, M. N., Yücel, Z., & Gönençgil, B. (1999). Sediment and water influxes into the Black Sea by Anatolian Rivers. Zeitschrift für Geomorphologie N.F., 43(1), 61–79.

    Google Scholar 

  • Arpe, K., Leroy, S. A. G., & Mikolajewicz, U. (2011). A comparison of climate simulations for the last glacial maximum with three different versions of the ECHAM model and implications for summer-green tree refugia. Climate of the Past, 7, 91–114.

    Google Scholar 

  • Beaulieu, d. J.-L., Richard, H., Ruffaldi, P., & Clerc, J. (1994). History of vegetation, climate and human action in the French Alps and the Jura over the last 15,000 years. Dissertationes Botanicae, 234, 253–275.

    Google Scholar 

  • Bertini, A., Sadori, L., Combourieu-Nebout, N., Donders, T. H., Kouli, K., Koutsodendris, A., Joannin, S., Masi, A., Mercuri, A. M., Panagiotopoulos, K., Peyron, O., Sinopoli, G., Torri, P., Zanchetta, G., Francke, A., & Wagner, B. (2016). All together now: an international palynological team documents vegetation and climate changes during the last 500 kyr at Lake Ohrid (SE Europe). Alpine and Mediterranean Quaternary, 29(2), 201–210.

    Google Scholar 

  • Biltekin, D., Popescu, S.-M., Suc, J.-P., Quézel, P., Jiménez-Moreno, G., Yavuz, N., & Çağatay, M. N. (2015). Anatolia: a long-time plant refuge area documented by pollen records over the last 23 million years. Review of Palaeobotany and Palynology, 215, 1–22.

    Google Scholar 

  • Birks, H. J., Heiri, O., Seppä, H., & Bjune, A. E. (2010). Strengths and weaknesses of quantitative climate reconstructions based on Late-Quaternary biological proxies. The Open Ecology Journal, 3, 68–110.

    Google Scholar 

  • Bordon, A. (2009). Dynamique de la végétation et variations climatiques dans les Balkans au cours du dernier cycle climatique à partir des séquences polliniques des lacs Maliq et Ochrid (Albanie). PhD thesis, Université de Franche-Comté, 325 pp.

  • Bordon, A., Peyron, O., Lézine, A.-M., Brewer, S., & Fouache, E. (2009). Pollen-inferred Late-Glacial and Holocene climate in southern Balkans (Lake Maliq). Quaternary International, 200, 19–30.

    Google Scholar 

  • Çağatay, M. N., Görür, N., Algan, O., Eastoe, C., Tchepalyga, A., Ongan, D., Kuhn, T., & Kuşcu, I. (2000). Late Glacial–Holocene palaeoceanography of the sea of Marmara: timing of connections with the Mediterranean and the Black Seas. Marine Geology, 167, 191–206.

    Google Scholar 

  • Çağatay, M. N., Wulf, S., Sancar, Ü., Özmaral, A., Vidal, L., Henry, P., Appelt, O., & Gasperini, L. (2015). The tephra record from the sea of Marmara for the last ca. 70 ka and its palaeoceanographic implications. Marine Geology, 361, 96–110.

    Google Scholar 

  • Çağatay, M. N., Eriş, K. K., Makaroğlu, Ö., Yakupoğlu, N., Henry, P., Leroy, S. A. G., Uçarkus, G., Sakınç, M., Yalamaz, B., Bozyiğit, C., & Kende, J. (2019). The sea of Marmara during marine isotope stages 5 and 6. Quaternary Science Reviews, 220, 124–141.

    Google Scholar 

  • Caner, H., & Algan, O. (2002). Palynology of sapropelic layers from the Marmara Sea. Marine Geology, 190, 35–46.

    Google Scholar 

  • Cour, P. (1974). Nouvelles techniques de détection des flux et des retombées polliniques: étude de la sédimentation des pollens et des spores à la surface du sol. Pollen et Spores, 16(1), 103–141.

    Google Scholar 

  • Cour, P., & Duzer, D. (1978). La signification climatique, édaphique et sédimentologique des rapports entre taxons en analyse pollinique. Annales des Mines de Belgique, 7–8, 155–164.

    Google Scholar 

  • Denk, T. (1999a). The taxonomy of Fagus in western Eurasia, 1: Fagus sylvatica subsp. orientalis. Feddes Repertorium, 110(3–4), 177–200.

    Google Scholar 

  • Denk, T. (1999b). The taxonomy of Fagus in western Eurasia, 2: Fagus sylvatica subsp. sylvatica. Feddes Repertorium, 110(5–6), 381–412.

    Google Scholar 

  • Denk, T., Frotzler, N., & Davitashvili, N. (2001). Vegetational patterns and distribution of relict taxa in humid temperate forests and wetlands of Georgia (Transcaucasia). Biological Journal of the Linnean Society, 72, 287–332.

    Google Scholar 

  • Denk, T., Grimm, G., Stögerer, K., Langer, M., & Hemleben, V. (2002). The evolutionary history of Fagus in western Eurasia: evidence from genes, morphology and the fossil record. Plant Systematics and Evolution, 232, 231–236.

    Google Scholar 

  • Fang, J., Wang, Z., & Tang, Z. (Eds.) (2011). Atlas of woody plants in China. Distribution and climate. Heidelberg: Springer.

    Google Scholar 

  • Favre, E., Escarguel, G., Suc, J.-P., Vidal, G., & Thévenod, L. (2008). A contribution to deciphering the meaning of AP/NAP with respect to vegetation cover. Review of Palaeobotany and Palynology, 148, 13–35.

    Google Scholar 

  • Fontugne, M., Guichard, F., Bentaleb, I., Strechie, C., & Lericolais, G. (2009). Variations in 14C reservoir ages of Black Sea waters and sedimentary organic carbon during anoxic periods: influence of photosynthetic versus chemoautotrophic production. Radiocarbon, 51(3), 969–976.

    Google Scholar 

  • Giunta, S., Morigi, C., Negri, A., Guichard, F., & Lericolais, G. (2007). Holocene biostratigraphy and paleoenvironmental changes in the Black Sea based on calcareous nannoplankton. Marine Micropaleontology, 63, 91–110.

    Google Scholar 

  • Hammen, T. van der, Wijmstra, T. A., & Zagwijn, W. H. (1971). The floral record of the late Cenozoic in Europe. In The late Cenozoic glacial ages (pp. 391–424). New Haven and London: Yale University Press.

    Google Scholar 

  • Johnsen, S. J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J. P., Clausen, H. B., Miller, H., Masson-Delmotte, V., Sveinbjörnsdottir, A. E., & White, J. (2001). Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. Journal of Quaternary Science, 16, 299–307.

    Google Scholar 

  • Jones, G. A., & Gagnon, A. R. (1994). Radiocarbon chronology of Black Sea sediments. Deep Sea Research, Part I, 41(3), 531–557.

    Google Scholar 

  • Jones, M. D., Roberts, C. N., & Leng, M. J. (2007). Quantifying climatic change through the last glacial–interglacial transition based on lake isotope palaeohydrology from Central Turkey. Quaternary Research, 67, 463–473.

    Google Scholar 

  • Klotz, S., Guiot, J., & Mosbrugger, V. (2003). Continental European Eemian and early Würmian climate evolution: comparing signals using different quantitative reconstruction approaches based on pollen. Global and Planetary Change, 36, 277–294.

    Google Scholar 

  • Klotz, S., Müller, U., Mosbrugger, V., Beaulieu, J.-L. d., & Reille, M. (2004). Eemian to early Würmian climate dynamics: history and pattern of changes in Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 211, 107–126.

    Google Scholar 

  • Kotthoff, U., Müller, U., Pross, J., Schmiedl, G., Lawson, I. T., Schootbrugge, B. van de, & Schulz, H. (2008a). Late glacial and Holocene vegetation dynamics in the Aegean region: an integrated view based on pollen data from marine and terrestrial archives. The Holocene, 18(7), 1019–1032.

    Google Scholar 

  • Kotthoff, U., Pross, J., Müller, U. C., Peyron, O., Schmiedl, G., Schulz, H., & Bordon, A. (2008b). Climate dynamics in the borderlands of the Aegean Sea during formation of sapropel S1 deduced from a marine pollen record. Quaternary Science Reviews, 27, 832–845.

    Google Scholar 

  • Lézine, A.-M., von Grafenstein, U., Andersen, N., Belmecheri, S., Bordon, A., Caron, B., Cazet, J.-P., Erlenkeuser, H., Fouache, E., Grenier, C., Huntsman-Mapila, P., Hureau-Mazaudier, D., Manelli, D., Mazaud, A., Robert, C., Sulpizio, R., Tiercelin, J.-J., Zanchetta, G., & Zeqollari, Z. (2010). Lake Ohrid, Albania, provides an exceptional multi-proxy record of environmental changes during the last glacial–interglacial cycle. Palaeogeography, Palaeoclimatology, Palaeoecology, 287, 116–127.

  • Londeix, L., Herreyre, Y., Turon, J.-L., & Fletcher, W. (2009). Last Glacial to Holocene hydrology of the Marmara Sea inferred from a dinoflagellate cyst record. Review of Palaeobotany and Palynology, 158, 52–71.

  • Major, C., Ryan, W., Lericolais, G., & Hajdas, I. (2002). Constraints on Black Sea outflow to the sea of Marmara during the last glacial–interglacial transition. Marine Geology, 190, 19–34.

    Google Scholar 

  • Major, C. O., Goldstein, S. L., Ryan, W. B. F., Lericolais, G., Piotrowski, A. M., & Hajdas, I. (2006). The co-evolution of Black Sea level and composition through the last deglaciation and its paleoclimatic significance. Quaternary Science Reviews, 25, 2031–2047.

  • Miebach, A., Niestrath, P., Roeser, P., & Litt, T. (2016). Impacts of climate and humans on the vegetation in northwestern Turkey: palynological insights from Lake Iznik since the Last Glacial. Climate of the Past, 12, 575–593.

    Google Scholar 

  • Mudie, P. J., Aksu, A. E., & Yašar, D. (2001). Late Quaternary dinoflagellate cysts from the Black, Marmara and Aegean seas: variations in assemblages, morphology and paleosalinity. Marine Micropaleontology, 43, 155–178.

    Google Scholar 

  • Mudie, P. J., Rochon, A., & Aksu, A. E. (2002). Pollen stratigraphy of Late Quaternary cores from Marmara Sea: land–sea correlation and paleoclimatic history. Marine Geology, 190, 233–260.

    Google Scholar 

  • Mudie, P. J., Rochon, A., Aksu, A. E., & Gillepsie, H. (2004). Late glacial, Holocene and modern dinoflagellate cyst assemblages in the Aegean–Marmara–Black Sea corridor: statistical analysis and re–interpretation of the early Holocene Noah’s flood hypothesis. Review of Palaeobotany and Palynology, 128, 143–167.

    Google Scholar 

  • Mudie, P. J., Marret, F., Aksu, A. E., Hiscott, R. N., & Gillepsie, H. (2007). Palynological evidence for climate change, anthropogenic activity and outflow of Black Sea water during the late Pleistocene and Holocene: centennial- to decadal-scale records from the Black and Marmara Seas. Quaternary International, 167–168, 73–90.

  • Nix, H. (1982). Environmental determinants of biogeography and evolution in Terra Australis. In W. R. Barker & P. J. M. Greenslade (Eds.) Evolution of the flora and fauna of arid Australia (pp. 47–66). Freewville: Peacock Publishing.

    Google Scholar 

  • Orombelli, G., & Ravazzi, C. (1996). The Late Glacial and Early Holocene: chronology and paleoclimate. Il Quaternario, 9(2), 439–444.

    Google Scholar 

  • Ozenda, P., & Borel, J.-L. (2000). An ecological map of Europe: why and how? Comptes-Rendus de l’Académie des Sciences de Paris, Sciences de la vie, 323, 983–994.

    Google Scholar 

  • Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633–1644.

    Google Scholar 

  • Popescu, S.-M., Biltekin, D., Winter, H., Suc, J.-P., Melinte-Dobrinescu, M. C., Klotz, S., Rabineau, M., Combourieu-Nebout, N., Clauzon, G., & Deaconu, F. (2010). Pliocene and Lower Pleistocene vegetation and climate changes at the European scale: long pollen records and climatostratigraphy. Quaternary International, 219, 152–167.

    Google Scholar 

  • Pross, J., Koutsodendris, A., Christanis, K., Fischer, T., Fletcher, W. J., Hardiman, M., Kalaitzidis, S., Knipping, M., Kotthoff, U., Milner, A. M., Müller, U. C., Schmiedl, G., Siavalas, G., Tzedakis, P. C., & Wulf, S. (2015). The 1.35-Ma-long terrestrial climate archive of Tenaghi Philippon, northeastern Greece: Evolution, exploration, and perspectives for future research. Newsletters on Stratigraphy, 48(3), 253–276.

    Google Scholar 

  • Quézel, P., & Barbero, M. (1985). Carte de la végétation potentielle de la région méditerranéenne. 1, Méditerranée orientale (pp. 3–69). Paris: Editions du Centre National de la Recherche Scientifique.

    Google Scholar 

  • Quézel, P., & Médail, F. (2003). Ecologie et biogéographie des forêts du bassin méditerranéen. Paris: Elsevier.

    Google Scholar 

  • Rego, F. C., & Rocha, M. S. (2014). Climatic patterns in the Mediterranean region. Ecologia mediterranea, 40(1), 49–59.

    Google Scholar 

  • Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L., Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer, H., Gkinis, V., Guillevic, M., Joek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T., Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P., Vinther, B. M., Walker, M. J. C., Wheatley, J. J., & Winstrup, M. (2014). A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews, 106, 14–28.

    Google Scholar 

  • Richards, K., Mudie, P., Rochon, A., Athersuch, J., Bolikhovskaya, N., Hoogendoorn, R., & Verlinden, V. (2017). Late Pleistocene to Holocene evolution of the Emba Delta, Kazakhstan, and coastline of the north-eastern Caspian Sea: sediments, ostracods, pollen and dinoflagellate cyst records. Palaeogeography, Palaeoclimatology, Palaeoecology, 468, 427–452.

  • Ryan, W. B. F. (2007). Status of the Black Sea flood hypothesis. In V. Yanko-Hombach, A. S. Gilbert, & P. M. Dolukhanov (Eds.) The Black Sea Flood Question (pp. 63–88). Dordrecht: Springer.

    Google Scholar 

  • Ryan, W. B. F., Pitman III, W. C., Major, C. O., Shimkus, K., Moskalenko, V., Jones, J. A., Dimitrov, P., Görür, N., Sakinç, M., & Yüce, H. (1997). An abrupt drowning of Black Sea shelf. Marine Geology, 138, 119–126.

  • Ryan, W. B. F., Major, C., Lericolais, G., & Goldstein, S. L. (2003). Catastrophic flooding of the Black Sea. Annual Review of Earth and Planetary Sciences, 31, 525–554.

  • Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O’Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., & Zemsky, R. (2009). Global multi-resolution topography synthesis. Geochemistry, Geophysics, Geosystems, 10, Q03014. https://doi.org/10.1029/2008GC002332.

    Article  Google Scholar 

  • Seierstad, I. K., Abbott, P. M., Bigler, M., Blunier, T., Bourne, A. J., Brook, E., Buchardt, S. L., Buizert, C., Clausen, H. B., Cook, E., Dahl-Jensen, D., Davies, S. M., Guillevic, M., Johnsen, S., Pedersen, D. S., Popp, T. J., Rasmussen, S. O., Severinghaus, J. P., Svensson, A., & Vinther, B. M. (2014). Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for he past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint. Quaternary Science Reviews, 106, 29–46.

    Google Scholar 

  • Shatilova, I., Mchedlishvili, N., Rukhadze, L., & Kvavadze, E. (2011). The history of flora and vegetation of Georgia (South Caucasus). Tbilisi: Georgian National Museum.

    Google Scholar 

  • Soulet, G., Ménot, G., Lericolais, G., & Bard, E. (2011). A revised calendar age for the last reconnection of the Black Sea to the global ocean. Quaternary Science Reviews, 30, 1019–1026.

    Google Scholar 

  • Suc, J.-P., Fauquette, S., & Popescu, S.-M. (2004). L’investigation palynologique du Cénozoïque passe par les herbiers. In R. Pierrel & J.-P. Reduron (Eds.) Les herbiers: un outil d’avenir. Tradition et modernité (pp. 67–87). Villers-lès-Nancy: Association française pour la conservation des espèces végétales.

    Google Scholar 

  • Suc, J.-P., Popescu, S.-M., Fauquette, S., Bessedik, M., Jiménez-Moreno, G., Bachiri Taoufiq, N., Zheng, Z., Médail, F., & Klotz, S. (2018). Reconstruction of Mediterranean flora, vegetation and climate for the last 23 million years based on an extensive pollen dataset. Ecologia mediterranea, 44(2), 53–85.

    Google Scholar 

  • Thompson, R. S., Anderson, K. H., & Bartlein, P. J. (2000). Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America – Hardwoods. U.S. Geological Survey Professional Paper, 1650 (B), 1–423.

  • Tzedakis, P. C. (1993). Long-term tree populations in northwest Greece through multiple Quaternary climatic cycles. Nature, 364, 437–440.

    Google Scholar 

  • Valsecchi, V., Sánchez-Goñi, M. F., & Londeix, L. (2012). Vegetation dynamics in the Northeastern Mediterranean region during the past 23 000 yr: insights from a new pollen record from the sea of Marmara. Climate of the Past, 8, 1941–1956.

    Google Scholar 

  • Vinther, B. M., Clausen, H. B., Johnsen, S. J., Rasmussen, S. O., Andersen, K. K., Buchardt, S. L., Dahl-Jensen, D., Seierstad, I. K., Siggaard-Andersen, M.-L., Steffensen, J. P., Svensson, A., Olsen, J., & Heinemeier, J. (2006). A synchronized dating of the Greenland ice cores throughout the Holocene. Journal of Geophysical Research, 111, D13102.

    Google Scholar 

  • Wagner, B., Vogel, H., Francke, A., Friedrich, T., Donders, T., Lacey, J. H., Leng, M. J., Regattieri, E., Sadori, L., Wilke, T., Zanchetta, G., Albrecht, C., Bertini, A., Combourieu-Nebout, N., Cvetkoska, A., Giaccio, B., Grazhdani, A., Hauffe, T., Holtvoeth, J., Joannin, S., Jovanovska, E., Just, J., Kouli, K., Kousis, I., Koutsodendris, A., Krastel, S., Lagos, M., Leicher, N., Levkov, Z., Lindhorst, K., Masi, A., Melles, M., Mercuri, A. M., Nomade, S., Nowaczyk, N., Panagiotopoulos, K., Peyron, O., Reed, J. M., Sagnotti, L., Sinopoli, G., Stelbrink, B., Sulpizio, R., Timmermann, A., Tofilovska, S., Torri, P., Wagner-Cremer, F., Wonik, T., & Zhang, X. (2019). Mediterranean winter rainfall in phase with African monsoons during the past 1.36 million years. Nature, 573, 256–260.

    Google Scholar 

  • Walker, M., Head, M. J., Lowe, J., Berkelhammer, M., Björck, S., Cheng, H., Cwynar, L. C., Fisher, D., Gkinis, V., Long, A., Newnham, R., Rasmussen, S. O., & Weiss, H. (2019). Subdividing the Holocene Series/Epoch: formalization of stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary stratotypes. Journal of Quaternary Science, 34(3), 173–186.

    Google Scholar 

  • Wijmstra, T. A., & Groenhart, M. C. (1983). Record of 700,000 years vegetational history in eastern Macedonia (Greece). Revista de la Academia Colombiana Ciencias Exactas, Físicas y Naturales, 15, 87–98.

    Google Scholar 

  • Zeist, W. van, & Bottema, S. (1982). Vegetational history of the eastern Mediterranean and the near east during the last 20,000 years. In J. L. Bintliff & W. Van Zeist (Eds.) Palaeoclimates, palaeoenvironments and human communities in the eastern Mediterranean region in later prehistory (pp. 277–321). Oxford: BAR international series 133.

Download references

Acknowledgements

Contribution to the European Community Project ASSEMBLAGE (EVK3-CT-2002-00090) with the support of a Fullbright Grant (S.-M.P.) and a Von Humboldt grant (S.K.). The crew and captain of the research vessel Le Suroît are acknowledged for their support in coring. M. Casas Gallego and Carina Hoorn are acknowledged for improving the manuscript with their comments and corrections. We are also grateful for the invitation to contribute to this special issue by the guest-editors Angela Bruch, Dieter Uhl, and Torsten Utescher.

Author information

Authors and Affiliations

Authors

Contributions

S.-M Popescu, G. Jiménez-Moreno, and J.-P. Suc performed the pollen analyses. G. Lericolais and M.N. Çağatay provided the cores and information on their litho-stratigraphy. F. Guichard and L. Giosan realised the 14C datings. M. Calleja, S.-M. Popescu, J.-P. Suc, and S. Fauquette performed the sampling and interpretation of air-borne pollen records in Romania. S. Klotz transferred the pollen data into climatic estimates. S.-M. Popescu and J.-P. Suc wrote the text and conceived the figures and tables. All the co-authors significantly contributed to improve the manuscript.

Corresponding author

Correspondence to Speranta-Maria Popescu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue “Palaeobotanical contributions in honour of Volker Mosbrugger”

Electronic supplementary material

Table 1

Detailed pollen record of core BLKS9810 (PDF 102 kb)

Table 2

Detailed pollen record of core B2KS33 (PDF 89 kb)

Table 3

Detailed pollen record of core C10 (PDF 91 kb)

Table 4

Modern detailed pollen records: collected dust from 3 localities in the Carpathian area (South Romania) and 11 surface sediments from the Black and Marmara seas (PDF 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popescu, SM., Jiménez-Moreno, G., Klotz, S. et al. Late Quaternary vegetation and climate of SE Europe–NW Asia according to pollen records in three offshore cores from the Black and Marmara seas. Palaeobio Palaeoenv 101, 197–212 (2021). https://doi.org/10.1007/s12549-020-00464-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-020-00464-x

Keywords

Navigation