Skip to main content
Log in

Layered double hydroxides as heterogeneous catalyst systems in the cross-coupling reactions: an overview

  • Comprehensive review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Layered double hydroxides (LDHs) are recognized as two-dimensional (2D) clay materials, which comprise the interlayer anions and host layers with a positive charge (brucite-like M(OH)6 octahedral). They have been used as effective and eco-friendly heterogeneous catalytic systems in cross-coupling reactions. In this review, we try to underscore the applications of (LDHs) as an efficient and green catalyst in some important name reactions, namely Suzuki, Heck, Sonogashira, and Ullmann cross-coupling reactions leading to carbon–carbon bond formations.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Fig. 3
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30

Similar content being viewed by others

References

  1. Schlögl R (2015) Heterogeneous catalysis. Angew Chem Int Edn 54(11):3465–3520

    Google Scholar 

  2. Chemistry, International Union of Pure and Applied (2019) IUPAC Gold Book—catalyst. https://goldbook.iupac.org. Accessed 12 Feb 2019

  3. Rothenberg G (2017) Catalysis: concepts and green applications. Wiley, Weinheim

    Google Scholar 

  4. Ma Z, Zaera F (2006) King RB, Crabtree RH, Lukehart CM, Atwood DA (eds)

  5. Anastas PT, Kirchhoff MM (2002) A recyclable electrochemical allylation in water ACC. Chem Res 35:686

    CAS  Google Scholar 

  6. Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299(5613):1688–1691

    CAS  PubMed  Google Scholar 

  7. Schulz KJ, DeYoung JH Jr, Seal RR II, Bradley DC (eds) (2017) Critical mineral resources of the United States: Economic and environmental geology and prospects for future supply. U.S. Geological Survey Professional Paper 1802, p 797. https://doi.org/10.3133/pp1802

  8. Wang Y, Yan D, El Hankari S, Zou Y, Wang S (2018) Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Adv Sci 5(8):1800064

    Google Scholar 

  9. Fogg AM, Green VM, Harvey HG, O’Hare D (1999) New separation science using shape-selective ion exchange intercalation chemistry. Adv Mater 11(17):1466–1469

    CAS  Google Scholar 

  10. Wang Q, O’Hare D (2012) Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev 112(7):4124–4155

    CAS  PubMed  Google Scholar 

  11. Fan G, Li F, Evans DG, Duan X (2014) Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem Soc Rev 43(20):7040–7066

    CAS  PubMed  Google Scholar 

  12. Feng J, He Y, Liu Y, Du Y, Li D (2015) Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: general functionality and promising application prospects. Chem Soc Rev 44(15):5291–5319

    CAS  PubMed  Google Scholar 

  13. Arrabito G, Bonasera A, Prestopino G, Orsini A, Mattoccia A, Martinelli E, Pignataro B, Medaglia PG (2019) Layered double hydroxides: a toolbox for chemistry and biology. Crystals 9(7):361

    CAS  Google Scholar 

  14. Zhao D, Sheng G, Hu J, Chen C, Wang X (2011) The adsorption of Pb (II) on Mg2Al layered double hydroxide. Chem Eng J 171(1):167–174

    CAS  Google Scholar 

  15. Zhao H, Vance GF (1998) Molecular inclusion properties of hydrophobic organic compounds by a modified β-cyclodextrin intercalated within a layered double hydroxide. J Incl Phenom Mol Recognit Chem 31(4):305–317

    CAS  Google Scholar 

  16. Gao Y, Wu J, Wang Q, Wilkie CA, O’Hare D (2014) Flame retardant polymer/layered double hydroxide nanocomposites. J Mater Chem A 2(29):10996–11016

    CAS  Google Scholar 

  17. Asif M, Aziz A, Wang Z, Ashraf G, Wang J, Luo H, Chen X, Xiao F, Liu H (2019) Hierarchical CNTs@ CuMn layered double hydroxide nanohybrid with enhanced electrochemical performance in H2S detection from live cells. Anal Chem 91(6):3912–3920

    CAS  PubMed  Google Scholar 

  18. Evans DG, Duan X (2006) Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine. Chem Commun 5:485–496

    Google Scholar 

  19. Xu M, Wei M (2018) Layered double hydroxide-based catalysts: recent advances in preparation, structure, and applications. Adv Func Mater 28(47):1802943

    Google Scholar 

  20. McAfee SM, McCahill JS, Macaulay CM, Hendsbee AD, Welch GC (2015) Utility of a heterogeneous palladium catalyst for the synthesis of a molecular semiconductor via Stille, Suzuki, and direct heteroarylation cross-coupling reactions. RSC Adv 5(33):26097–26106

    CAS  Google Scholar 

  21. Senra JD, Silva AC, Santos RV, Malta LF, Simas AB (2017) Palladium on layered double hydroxide: a heterogeneous system for the enol phosphate carbon-oxygen bond activation in aqueous media. J Chem 2017:1–10

    Google Scholar 

  22. Mpungose PP, Vundla ZP, Maguire GE, Friedrich HB (2018) The current status of heterogeneous palladium catalysed Heck and Suzuki cross-coupling reactions. Molecules 23(7):1676

    PubMed Central  Google Scholar 

  23. He J, Wei M, Li B, Kang Y, Evans DG, Duan X (2006) Preparation of layered double hydroxides. In: Duan X, Evans DG (eds) Layered double hydroxides, vol 119. Springer, Berlin. https://doi.org/10.1007/430_006

    Chapter  Google Scholar 

  24. Sherman IT (2015) Layered double hydroxides (LDHs): synthesis, characterization and applications. Nova Science Publishers Inc., New York

    Google Scholar 

  25. Ebitani K, Motokura K, Mori K, Mizugaki T, Kaneda K (2006) Reconstructed hydrotalcite as a highly active heterogeneous base catalyst for carbon-carbon bond formations in the presence of water. J Org Chem 71:5440–5447

    CAS  PubMed  Google Scholar 

  26. Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T (2012) Photocatalytic conversion of CO2 in water over layered double hydroxides. Angew Chem Int Ed 51(32):8008–8011

    CAS  Google Scholar 

  27. Mullin JW (2001) Industrial techniques and equipment, crystallization, 4th edn. Butterworth-Heinemann, Oxford, pp 315–402

    Google Scholar 

  28. Zhao Y, Li F, Zhang R, Evans DG, Duan X (2002) Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps. Chem Mater 14(10):4286–4291

    CAS  Google Scholar 

  29. Mirsafaei R, Heravi MM, Ahmadi S, Moslemin MH, Hosseinnejad T (2015) In situ prepared copper nanoparticles on modified KIT-5 as an efficient recyclable catalyst and its applications in click reactions in water. J Mol Catal A: Chem 402:100–108

    CAS  Google Scholar 

  30. Heravi MM, Hashemi E, Beheshtiha YS, Kamjou K, Toolabi M, Hosseintash N (2014) Solvent-free multicomponent reactions using the novel N-sulfonic acid modified poly (styrene-maleic anhydride) as a solid acid catalyst. J Mol Catal A: Chem 392:173–180

    CAS  Google Scholar 

  31. Heravi MM, Hashemi E, Beheshtiha YS, Ahmadi S, Hosseinnejad T (2014) PdCl2 on modified poly (styrene-co-maleic anhydride): a highly active and recyclable catalyst for the Suzuki-Miyaura and Sonogashira reactions. J Mol Catal A: Chem 394:74–82

    CAS  Google Scholar 

  32. Tamoradi T, Daraie M, Heravi MM (2020) Synthesis of palladated magnetic nanoparticle (Pd@ Fe3O4/AMOCAA) as an efficient and heterogeneous catalyst for promoting Suzuki and Sonogashira cross-coupling reactions. Appl Organomet Chem 34(4):e5538

    CAS  Google Scholar 

  33. Heidari B, Heravi MM, Nabid MR, Sedghi R (2019) Well-dispersed N-heterocyclic carbene–palladium complex anchored onto poly (acrylic acid)/poly (vinyl alcohol) nanofibers: novel, superior and ecofriendly nanocatalyst for the Suzuki-Miyaura cross-coupling reaction. Appl Organomet Chem 33(7):e4934

    Google Scholar 

  34. Heidari B, Heravi MM, Nabid MR, Sedghi R, Hooshmand SE (2019) Novel palladium nanoparticles supported on β-cyclodextrin@ graphene oxide as magnetically recyclable catalyst for Suzuki-Miyaura cross-coupling reaction with two different approaches in bio-based solvents. Appl Organomet Chem 33(1):e4632

    Google Scholar 

  35. Asadi S, Sedghi R, Heravi MM (2017) Pd nanoparticles immobilized on supported magnetic GO@ PAMPS as an auspicious catalyst for Suzuki-Miyaura coupling reaction. Catal Lett 147(8):2045–2056

    CAS  Google Scholar 

  36. Sadjadi S, Heravi MM, Malmir M (2018) Pd@ HNTs-CDNS-g-C3N4: A novel heterogeneous catalyst for promoting ligand and copper-free Sonogashira and Heck coupling reactions, benefits from halloysite and cyclodextrin chemistry and g-C3N4 contribution to suppress Pd leaching. Carbohyd Polym 186:25–34

    CAS  Google Scholar 

  37. Sadjadi S, Heravi MM, Raja M, Kahangi FG (2018) Palladium nanoparticles immobilized on sepiolite–cyclodextrin nanosponge hybrid: efficient heterogeneous catalyst for ligand-and copper-free C-C coupling reactions. Appl Organomet Chem 32(10):e4508

    Google Scholar 

  38. Heravi MM, Heidari B, Ghavidel M, Ahmadi T (2017) Non-conventional green strategies for NHC catalyzed carbon-carbon coupling reactions. Curr Org Chem 21(22):2249–2313

    CAS  Google Scholar 

  39. Sadjadi S, Heravi MM (2016) Pd (0) encapsulated nanocatalysts as superior catalytic systems for Pd-catalyzed organic transformations. RSC Advances 6(91):88588–88624

    CAS  Google Scholar 

  40. Li J, Bai X (2016) Ultrasonic synthesis of supported palladium nanoparticles for room-temperature Suzuki-Miyaura coupling. J Mater Sci 51(19):9108–9122

    CAS  Google Scholar 

  41. Shiyong LIU, Qizhong ZHOU, Zhengneng JIN, Jiang H, Jiang X (2010) Dodecylsulfate anion embedded layered double hydroxide supported nanopalladium catalyst for the Suzuki reaction. Chin J Catal 31(5):557–561

    Google Scholar 

  42. Alzhrani G, Ahmed NS, Aazam ES, Saleh TS, Mokhtar M (2019) Novel efficient Pd-Free Ni-layered double hydroxide catalysts for a Suzuki C-C coupling reaction. ChemSelect 4(27):7904–7911

    CAS  Google Scholar 

  43. Jiménez-Sanchidrián C, Mora M, Ruiz JR (2006) Suzuki cross-coupling reaction over a palladium–pyridine complex immobilized on hydrotalcite. Catal Commun 7(12):1025–1028

    Google Scholar 

  44. Choudary BM, Roy M, Roy S, Kantam ML (2005) Layered double hydroxides supported nanoplatinum catalyst for Suzuki coupling of aryl halides. J Mol Catal A: Chem 241(1–2):215–218

    CAS  Google Scholar 

  45. Choudary BM, Madhi S, Chowdari NS, Kantam ML, Sreedhar B (2002) Layered double hydroxide supported nanopalladium catalyst for Heck-, Suzuki-, Sonogashira-, and Stille-type coupling reactions of chloroarenes. J Am Chem Soc 124(47):14127–14136

    CAS  PubMed  Google Scholar 

  46. Kantam ML, Subhas MS, Roy S, Roy M (2006) Layered double hydroxide-supported nanopalladium: an efficient and reusable catalyst for Suzuki coupling of aryl iodides and bromides at room temperature. Synlett 2006(04):0633–0635

    Google Scholar 

  47. Kantam ML, Roy S, Roy M, Sreedhar B, Choudary BM, De RL (2007) Layered double hydroxides supported rhodium (0): an efficient and reusable catalyst for Heck, Suzuki, and Stille reactions of haloarenes. J Mol Catal A: Chem 273(1–2):26–31

    CAS  Google Scholar 

  48. Zhang Q, Xu J, Yan D, Li S, Lu J, Cao X, Wang B (2013) The in situ shape-controlled synthesis and structure–activity relationship of Pd nanocrystal catalysts supported on layered double hydroxide. Catal Sci Technol 3(8):2016–2024

    CAS  Google Scholar 

  49. Van Vaerenbergh B, De Vlieger K, Claeys K, Vanhoutte G, De Clercq J, Vermeir P, Verberckmoes A (2018) The effect of the hydrotalcite structure and nanoparticle size on the catalytic performance of supported palladium nanoparticle catalysts in Suzuki cross-coupling. Appl Catal A 550:236–244

    Google Scholar 

  50. Karanjit S, Kashihara M, Nakayama A, Shrestha LK, Ariga K, Namba K (2018) Highly active and reusable hydrotalcite-supported Pd (0) catalyst for Suzuki coupling reactions of aryl bromides and chlorides. Tetrahedron 74(9):948–954

    CAS  Google Scholar 

  51. Ruiz JR, Jiménez-Sanchidrián C, Mora M (2006) Palladium supported on hydrotalcite as a catalyst for the Suzuki cross-coupling reaction. Tetrahedron 62(12):2922–2926

    CAS  Google Scholar 

  52. Mora M, Jiménez-Sanchidrián C, Ruiz JR (2008) Suzuki cross-coupling reaction of aryl and heterocyclic bromides and aromatic polybromides on a Pd (II)-hydrotalcite catalyst. Appl Organomet Chem 22(2):122–127

    CAS  Google Scholar 

  53. Mora M, Jiménez-Sanchidrián C, Ruiz JR (2008) Suzuki cross-coupling reactions over Pd (II)-hydrotalcite catalysts in water. J Mol Catal A: Chem 285(1–2):79–83

    CAS  Google Scholar 

  54. Mora M, Jiménez-Sanchidrián C, Ruiz JR (2006) Heterogeneous Suzuki cross-coupling reactions over palladium/hydrotalcite catalysts. J Colloid Interface Sci 302(2):568–575

    CAS  PubMed  Google Scholar 

  55. Arundhathi R, Damodara D, Mohan KV, Kantam ML, Likhar PR (2013) Monodispersed and stable nano copper (0) from copper-aluminium hydrotalcite: importance in C-C couplings of deactivated aryl chlorides. Adv Synth Catal 355(4):751–756

    CAS  Google Scholar 

  56. Sahoo M, Mansingh S, Subudhi S, Mohapatra P, Parida K (2019) A plasmonic AuPd bimetallic nanoalloy decorated over a GO/LDH hybrid nanocomposite via a green synthesis route for robust Suzuki coupling reactions: a paradigm shift towards a sustainable future. Catal Sci Technol 9(17):4678–4692

    CAS  Google Scholar 

  57. Varga G, Karádi K, Kukovecz Á, Kónya Z, Sipos P, Pálinkó I (2019) Placing Ni(II) ions in various positions in/on layered double hydroxides: synthesis, characterization and testing in C–C coupling reactions. Catal Lett 149(10):2899–2905

    CAS  Google Scholar 

  58. Zhou H, Zhuo GL, Jiang XZ (2006) Heck reaction catalyzed by Pd supported on LDH-F hydrotalcite. J Mol Catal A: Chem 248(1–2):26–31

    CAS  Google Scholar 

  59. Ay AN, Abramova NV, Konuk D, Lependina OL, Sokolov VI, Zümreoglu-Karan B (2013) Magnetically-recoverable Pd-immobilized layered double hydroxide–iron oxide nanocomposite catalyst for carbon–carbon cross-coupling reactions. Inorg Chem Commun 27:64–68

    CAS  Google Scholar 

  60. Shi W, Yu J, Jiang Z, Shao Q, Su W (2017) Encaging palladium (0) in layered double hydroxide: a sustainable catalyst for solvent-free and ligand-free Heck reaction in a ball mill. Beilstein J Org Chem 13(1):1661–1668

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Roy S, Roy M, Trivedi R (2008) Layered-double-hydroxide-supported rhodium (0): an efficient and reusable catalyst for the heck-type coupling of alkenes and arylboronic acids. Helv Chim Acta 91(9):1670–1674

    CAS  Google Scholar 

  62. Rohani S, Ziarani GM, Ziarati A, Badiei A (2019) Designer 3D CoAl-layered double hydroxide@ N, S doped graphene hollow architecture decorated with Pd nanoparticles for Sonogashira couplings. Appl Surf Sci 496:143599

    CAS  Google Scholar 

  63. Corma A, García H, Primo A (2006) Palladium and copper supported on mixed oxides derived from hydrotalcite as reusable solid catalysts for the Sonogashira coupling. J Catal 241(1):123–131

    CAS  Google Scholar 

  64. Ahmed NS, Menzel R, Wang Y, Garcia-Gallastegui A, Bawaked SM, Obaid AY, Basahel SN, Mokhtar M (2017) Graphene-oxide-supported CuAl and CoAl layered double hydroxides as enhanced catalysts for carbon-carbon coupling via Ullmann reaction. J Solid State Chem 246:130–137

    CAS  Google Scholar 

  65. Dumbre D, Choudhary VR, Selvakannan PR (2016) Cu–Fe layered double hydroxide derived mixed metal oxide: environmentally benign catalyst for Ullmann coupling of aryl halides. Polyhedron 120:180–184

    CAS  Google Scholar 

  66. Abdellattif MH, Mokhtar M (2018) MgAl-layered double hydroxide solid base catalysts for henry reaction: a green protocol. Catalysts 8(4):133

    Google Scholar 

  67. Benaissi K, Hélaine V, Prevot V, Forano C, Hecquet L (2011) Efficient immobilization of yeast transketolase on layered double hydroxides and application for ketose synthesis. Adv Synth Catal 353(9):1497–1509

    CAS  Google Scholar 

  68. Kantam ML, Prakash BV, Reddy CRV, Sreedhar B (2005) Layered double hydroxide-supported gold catalyst for three-component aldehyde-amine-alkyne coupling. Synlett 2005(15):2329–2332

    Google Scholar 

  69. Sipos P, Pálinkó I (2018) As-prepared and intercalated layered double hydroxides of the hydrocalumite type as efficient catalysts in various reactions. Catal Today 306:32–41

    CAS  Google Scholar 

  70. Motokura K, Nishimura D, Mori K, Mizugaki T, Ebitani K, Kaneda K (2004) A ruthenium-grafted hydrotalcite as a multifunctional catalyst for direct α-alkylation of nitriles with primary alcohols. J Am Chem Soc 126(18):5662–5663

    CAS  PubMed  Google Scholar 

  71. Liu X, Ding RS, He L, Liu YM, Cao Y, He HY, Fan KN (2013) C-C cross-coupling of primary and secondary benzylic alcohols using supported gold-based bimetallic catalysts. Chemsuschem 6(4):604–608

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Alzahra university.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid M. Heravi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heravi, M.M., Mohammadi, P. Layered double hydroxides as heterogeneous catalyst systems in the cross-coupling reactions: an overview. Mol Divers 26, 569–587 (2022). https://doi.org/10.1007/s11030-020-10170-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10170-7

Keywords

Navigation