Skip to main content

Advertisement

Log in

Biofilms of Pseudomonas and Lysinibacillus Marine Strains on High-Density Polyethylene

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Environmental pollution by plastic debris is estimated on a scale of 100 million metric tons, a portion of which is fragmented into micro- and nanoplastics. These fragments are often colonized by bacterial species in marine environments, possibly contributing to the biodegradation of such materials. However, further investigations are necessary to determine the impact of abiotic polymer weathering on biofilm adhesion, as well as the specific biofilm formation strategies employed by marine isolates. Here, we evaluate deep-sea sediment bacterial isolates for biofilm adhesion, extracellular matrix production, and polymer degradation ability. Our study focuses on high-density polyethylene (HDPE) fragments for their high durability and environmental persistence, subjecting fragments to abiotic weathering prior to bacterial colonization. Marine isolates identified as Pseudomonas sp. and Lysinibacillus sp. exhibited decreasing biofilm formation on weathered HDPE, especially over the first 24 h of incubation. This effect was countered by increased extracellular matrix production, likely improving cell adhesion to surfaces roughened by abiotic degradation. These adhesion strategies were contrasted with a reference Pseudomonas aeruginosa strain, which displayed high levels of biofilm formation on non-weathered HDPE and lower extracellular matrix production over the first 24 h of incubation. Furthermore, our results suggest that an increase in biofilm biomass correlated with changes to HDPE structure, indicating that these strains have a potential for biodegradation of plastic fragments. Therefore, this work provides a detailed account of biofilm formation strategies and bacteria-plastic interactions that represent crucial steps in the biodegradation of plastic fragments in marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wit W De, Hamilton A, Scheer R et al (2019) Por solucionar a poluição plástica: Transparência e responsabilização

  2. Jambeck JR, Geyer R, Wilcox C et al (2015) Plastic waste inputs from land into the ocean

  3. Jacquin J, Cheng J, Odobel C, Pandin C, Conan P, Pujo-Pay M, Barbe V, Meistertzheim AL, Ghiglione JF (2019) Microbial ecotoxicology of marine plastic debris: a review on colonization and biodegradation by the “plastisphere.”. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.00865

  4. Keswani A, Oliver DM, Gutierrez T, Quilliam RS (2016) Microbial hitchhikers on marine plastic debris: human exposure risks at bathing waters and beach environments. Mar Environ Res 118:10–19. https://doi.org/10.1016/j.marenvres.2016.04.006

    Article  CAS  PubMed  Google Scholar 

  5. Rummel CD, Jahnke A, Gorokhova E, Kühnel D, Schmitt-Jansen M (2017) Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ Sci Technol Lett 4:258–267. https://doi.org/10.1021/acs.estlett.7b00164

    Article  CAS  Google Scholar 

  6. Lohse MB, Gulati M, Johnson AD, Nobile CJ (2018) Development and regulation of single-and multi-species Candida albicans biofilms. Nat Rev Microbiol 16:19–31. https://doi.org/10.1038/nrmicro.2017.107

    Article  CAS  PubMed  Google Scholar 

  7. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575. https://doi.org/10.1038/nrmicro.2016.94

    Article  CAS  PubMed  Google Scholar 

  8. UNEP (2016) Marine plastic debris and microplastics – global lessons and research to inspire action and guide policy change. United Nations Environ Program

  9. Coutinho FMB, Mello IL, de Santa Maria LC (2003) Polietileno: principais tipos, propriedades e aplicações. Polímeros 13:01–13. https://doi.org/10.1590/S0104-14282003000100005

    Article  CAS  Google Scholar 

  10. Mohsenzadeh A, Zamani A, Taherzadeh MJ (2017) Bioethylene production from ethanol: a review and techno-economical evaluation. ChemBioEng Rev 2:75–91

    Article  Google Scholar 

  11. Da Luz JMR, Paes SA, Ribeiro KVG et al (2015) Degradation of green polyethylene by Pleurotus ostreatus. PLoS One 10. https://doi.org/10.1371/journal.pone.0126047

  12. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005

    Article  CAS  PubMed  Google Scholar 

  13. Thompson RC, Olson Y, Mitchell RP et al (2004) Lost at sea: where is all the plastic? Science (80- ) 304:838. https://doi.org/10.1126/science.1094559

    Article  CAS  Google Scholar 

  14. Koelmans AA, Kooi M, Law K, Van Sebille E (2017) All is not lost: fragmentation of plastic at sea. Environ Res Lett 12:114028

    Article  Google Scholar 

  15. Choy CA, Robison BH, Gagne TO et al (2019) The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci Rep 9:7843. https://doi.org/10.1038/s41598-019-44117-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kane IA, Clare MA, Miramontes E et al (2020) Seafloor microplastic hotspots controlle by deep-sea circulation. Science (80- ) 368:1140–1145. https://doi.org/10.1126/science.aba5899

    Article  CAS  Google Scholar 

  17. Pathak VM, Navneet (2017) Review on the current status of polymer degradation: a microbial approach. Bioresour Bioprocess 4. https://doi.org/10.1186/s40643-017-0145-9

  18. Lobelle D, Cunliffe M (2011) Early microbial biofilm formation on marine plastic debris. Mar Pollut Bull 62:197–200. https://doi.org/10.1016/j.marpolbul.2010.10.013

    Article  CAS  PubMed  Google Scholar 

  19. Harshvardhan K, Jha B (2013) Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Mar Pollut Bull 77:100–106. https://doi.org/10.1016/j.marpolbul.2013.10.025

    Article  CAS  PubMed  Google Scholar 

  20. Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol 47:7137–7146. https://doi.org/10.1021/es401288x

    Article  CAS  PubMed  Google Scholar 

  21. Morohoshi T, Oi T, Aiso H, Suzuki T, Okura T, Sato S (2018) Biofilm formation and degradation of commercially available biodegradable plastic films by bacterial consortiums in freshwater environments. Microbes Environ 00:0–3. https://doi.org/10.1264/jsme2.ME18033

    Article  Google Scholar 

  22. Miller DJ, Ketzer JM, Viana AR, Kowsmann RO, Freire AFM, Oreiro SG, Augustin AH, Lourega RV, Rodrigues LF, Heemann R, Preissler AG, Machado CX, Sbrissa GF (2015) Natural gas hydrates in the Rio Grande Cone (Brazil): a new province in the western South Atlantic. Mar Pet Geol 67:187–196. https://doi.org/10.1016/j.marpetgeo.2015.05.012

    Article  CAS  Google Scholar 

  23. Giongo A, Haag T, Simão TLL, Medina-Silva R, Utz LRP, Bogo MR, Bonatto SL, Zamberlan PM, Augustin AH, Lourega RV, Rodrigues LF, Sbrissa GF, Kowsmann RO, Freire AFM, Miller DJ, Viana AR, Ketzer JMM, Eizirik E (2016) Discovery of a chemosynthesis-based community in the western South Atlantic Ocean. Deep Res Part I Oceanogr Res Pap 112:45–56. https://doi.org/10.1016/j.dsr.2015.10.010

    Article  CAS  Google Scholar 

  24. Harrison JJ, Turner RJ, Ceri H (2005) Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ Microbiol 7:981–994. https://doi.org/10.1111/j.1462-2920.2005.00777.x

    Article  CAS  PubMed  Google Scholar 

  25. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853. https://doi.org/10.1093/nar/17.19.7843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10. https://doi.org/10.1093/oxfordjournals.molbev.a040023

  28. Q-Lab (2018) QUV Accelerated Weathering Tester. https://www.q-lab.com/products/quv-weathering-tester/quv#videos. Accessed April 2020

  29. Moore CJ, Moore SL, Leecaster MK, Weisberg SB (2001) A comparison of plastic and plankton in the North Pacific Central Gyre. Mar Po 42:1297–1300

    Article  CAS  Google Scholar 

  30. Chari PVB, Viswadeepika K, Kumar BA (2014) In vitro biofilm forming capacity on abiotic contact surfaces by outbreak-associated Vibrio harveyi strains. J Coast Life Med 2:132–140. https://doi.org/10.12980/JCLM.2.2014B85

    Article  Google Scholar 

  31. Stepanović S, Ćirković I, Ranin L, Švabić-Vlahović M (2004) Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett Appl Microbiol 38:428–432. https://doi.org/10.1111/j.1472-765X.2004.01513.x

    Article  PubMed  Google Scholar 

  32. Bhushan B (2000) Surface roughness analysis and measurement techniques. In: Modern tribology handbook: volume one: principles of tribology. pp 49–119

  33. Rajesh Kumar B, Subba Rao T (2012) AFM studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films. Dig J Nanomater Biostruct 7:1881–1889

    Google Scholar 

  34. Almond J, Sugumaar P, Wenzel MN, Hill G, Wallis C (2020) Determination of the carbonyl index of polyethylene and polypropylene using specified area under band methodology with ATR-FTIR spectroscopy. E-Polymers 20:369–381. https://doi.org/10.1515/epoly-2020-0041

    Article  CAS  Google Scholar 

  35. Zerbi G, Gallino G, Del Fanti N, Baini L (1989) Structural depth profiling in polyethylene films by multiple internal reflection infra-red spectroscopy. Polymer (Guildf) 30:2324–2327. https://doi.org/10.1016/0032-3861(89)90269-3

    Article  CAS  Google Scholar 

  36. Berne C, Ducret A, Hardy GG, Brun YV (2015) Adhesins involved in the attachment to abiotic surfaces by Gram-negative bacteria. Microbiol Spectr 3:1–45. https://doi.org/10.1128/microbiolspec.MB-0018-2015.Adhesins

    Article  CAS  Google Scholar 

  37. Jung MR, Horgen FD, Orski SV, Rodriguez C. V, Beers KL, Balazs GH, Jones TT, Work TM, Brignac KC, Royer SJ, Hyrenbach KD, Jensen BA, Lynch JM (2018) Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar Pollut Bull 127:704–716. https://doi.org/10.1016/j.marpolbul.2017.12.061

    Article  CAS  PubMed  Google Scholar 

  38. Esmaeili A, Pourbabaee AA, Alikhani HA et al (2013) Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil. PLoS One 8. https://doi.org/10.1371/journal.pone.0071720

  39. Andy M. Booth, Stephan Kubowicz, CJ Beegle-Krause, Jørgen Skancke, Tor Nordam, Eva Landsem M, Throne-Holst SJ (2018) Microplastic in global and Norwegian marine environments: Distributions, degradation mechanisms and transport

  40. Hoehler TM, Jørgensen BB (2013) Microbial life under extreme energy limitation. Nat Rev Microbiol 11:83–94. https://doi.org/10.1038/nrmicro2939

    Article  CAS  PubMed  Google Scholar 

  41. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. https://doi.org/10.1038/nrmicro2415

    Article  CAS  PubMed  Google Scholar 

  42. Tomaras AP, Dorsey CW, Edelmann RE, Actis LA (2003) Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology 149:3473–3484. https://doi.org/10.1099/mic.0.26541-0

    Article  CAS  PubMed  Google Scholar 

  43. Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N (2016) Environmental factors that shape biofilm formation. Biosci Biotechnol Biochem 80:7–12. https://doi.org/10.1080/09168451.2015.1058701

    Article  CAS  PubMed  Google Scholar 

  44. Kyaw BM, Champakalakshmi R, Sakharkar MK, Lim CS, Sakharkar KR (2011) Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian J Microbiol 52:411–419. https://doi.org/10.1007/s12088-012-0250-6

    Article  CAS  Google Scholar 

  45. Esmaeili A, Pourbabaee AA, Alikhani HA, Shabani F, Kumar L (2014) Colonization and biodegradation of photo-oxidized low-density polyethylene (LDPE) by new strains of Aspergillus sp. and Lysinibacillus sp. Bioremediat J 18:213–226. https://doi.org/10.1080/10889868.2014.917269

    Article  CAS  Google Scholar 

  46. O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79. https://doi.org/10.1146/annurev.micro.54.1.49

    Article  PubMed  Google Scholar 

  47. Ibarra-Trujillo C, Villar-Vidal M, Gaitán-Cepeda LA, Pozos-Guillen A et al (2012) Formation and quantification assay of Candida albicans and Staphylococcus aureus mixed biofilm. Rev Iberoam Micol 29:214–222. https://doi.org/10.1016/j.riam.2012.02.003

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Petróleo Brasileiro S.A. (PETROBRAS) for collecting the samples and financial support; Indústria Petroquímica Braskem S.A. for proving HDPE pellets; the Central Laboratory of Microscopy and Microanalysis (LabCEMM/PUCRS) for preparing and assisting the microscopic visualization; CNPq (Brazilian National Council for Scientific and Technological Development) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brasil) for the scholarships of master’s students.

Funding

The financial support was provided by Conegás II Project (PETROBRAS TC N° 0050.0096017.15.9) and IPR/PUCRS Research Fund. Funding was also provided by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES - Finance Code 001) and Brazilian National Council for Scientific and Technological Development (CNPq - master’s scholarship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Medina-Silva.

Ethics declarations

Conflict of Interest

The authors declare they have no conflict of interest.

Supplementary Information

Fig S1

Biofilm formation pattern of each marine strain after 24 or 48 h of incubation with HDPE fragments. (a) Reference strain, (b) M3, (c) M4 and (d) M5 isolates showed an overall decrease in biofilm formation with HDPE weathering. The reference strain exhibited lower biofilm formation after 48 h, but the marine isolates showed similar biofilm levels after 24 or 48 h. Points represent mean ± SEM. (PNG 147 kb)

High resolution image (TIF 483 kb)

Fig S2

3D-AFM images of marine strains that showed more heterogeneous surfaces in different experimental conditions. Non-weathered HDPE: (a) M5 and (b) M3. 400-HDPE: (c) M5 and (d) M4. 600-HDPE: (e) reference strain and (f) M4. 800-HDPE: (g) M3 and (h) M5. Scale bar = 10 μm. (PNG 1656 kb)

High resolution image (TIF 6624 kb)

Fig S3

FTIR spectra of biofilm-colonized HDPE fragments obtained for all strains, surface weathering levels and incubation intervals. Absorbance values were vector-normalized, and spectra were shifted vertically for representation. RS = Reference strain (PNG 569 kb)

High resolution image (TIF 1830 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, M.M., Proenca, A.M., Moreira-Silva, E. et al. Biofilms of Pseudomonas and Lysinibacillus Marine Strains on High-Density Polyethylene. Microb Ecol 81, 833–846 (2021). https://doi.org/10.1007/s00248-020-01666-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01666-8

Keywords

Navigation