Skip to main content
Log in

Atypical points at infinity and algorithmic detection of the bifurcation locus of real polynomials

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We show that the variation of the topology at infinity of a two-variable polynomial function is localisable at a finite number of “atypical points” at infinity. We construct an effective algorithm with low complexity in order to detect sharply the bifurcation values of the polynomial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. If instead of \(\hbox {C}^{\infty }\) we ask only “\(\hbox {C}^0\) trivial fibration” in the definition of typical value, then simple examples like \(f(x,y) = x^{3}+y^{2}\) show that a singular fibre may be typical (the fibre \(f^{-1}(0)\) in this case).

  2. In [5], the authors do not use the notion of “splitting” but something else called “cleaving”. They use parametrisations of affine curves without any truncation (whereas examples are worked out with some truncations), and effectivity is no concern either.

  3. The papers [22, 25, 28] present more general statements in \(n\ge 2\) complex variables, all of which amount to the same in case \(n=2\).

  4. Let us remark here that the sets \(f(\mathrm{Sing}f)\) and \({{\mathcal {A}}}_{f}\) may be disjoint, see Example 2.5.

  5. See also [28, Definition 1.1.5], [15, Theorem 4.7], [6, Definition 2.1], [8, Definition 2.1], [12, Page 1], [13, Page 1].

  6. The space \({{\mathbb {X}}}\) is not necessarily the closure in \({{\mathbb {P}}}^2\times {{\mathbb {R}}}\) of the graph of f like it is the case over \({{\mathbb {C}}}\), see [28, Note 1.1.3], for instance in the example \(f(x,y)=x^4 + y^2\).

  7. One may compare our definition of vanishing at \(\lambda \) to the contrary of “no vanishing at \(\lambda \)” as stated in [29, 15, Definition 3.1]. Similarly, the precise contrary of what we call here splitting at \(\lambda \) compares to the notion of “strong non-splitting” of [15, Definition 4.3]. The first part of the paper [15], as well as the whole paper [29], use a slightly weaker notion of “splitting” than in our Definition 2.7. The difference is that the non-splitting of [29] did not include the behaviour of compact components whereas our Definition 2.7 does. See [29, Example 3.2] where a circle component “splits” into a line component.

  8. Equivalently: (2’). there exist j and a continuous family of analytic paths \(\gamma _t:[0,1]\rightarrow X^{j}_t\) such that the limit set \(\lim _{t\rightarrow \lambda } \mathrm{Im}\gamma _t\) is not connected.

  9. See e.g. [19].

  10. As in [28, Definition 3.1.8].

References

  1. Araújo dos Santos, R.N., Chen, Y., Tibăr, M.: Real polynomial maps and singular open books at infinity. Math. Scand. 118, 57–69 (2016)

    Article  MathSciNet  Google Scholar 

  2. Bajbar, T., Stein, O.: Coercive polynomials and their Newton polytopes. SIAM J. Optim. 25(3), 1542–1570 (2015)

    Article  MathSciNet  Google Scholar 

  3. Basu, S., Pollack, R., Roy, M-F.: Algorithms in real algebraic geometry. Second edition. Algorithms and Computation in Mathematics, 10. Springer-Verlag, Berlin, (2006)

  4. Brieskorn, E., Knorrer, H.: Plane algebraic curves. Birkhauser Verlag, Basel (1986)

    Book  Google Scholar 

  5. Coste, M., de la Puente, M.J.: Atypical values at infinity of a polynomial function on the real plane: an erratum, and an algorithmic criterion. J. Pure Appl. Algebra 162(1), 23–35 (2001)

    Article  MathSciNet  Google Scholar 

  6. Dias, L.R.G., Tibăr, M.: Detecting bifurcation values at infinity of real polynomials. Math. Z. 279, 311–319 (2015)

    Article  MathSciNet  Google Scholar 

  7. Dias, L.R.G., Ruas, M.A.S., Tibăr, M.: Regularity at infinity of real mappings and a Morse–Sard theorem. J. Topol. 5(2), 323–340 (2012)

    Article  MathSciNet  Google Scholar 

  8. Dias, L.R.G., Tanabé, S., Tibar, M.: Towards effective detection of the bifurcation locus of real polynomial maps. Found. Comput. Math. 17, 837–849 (2017)

    Article  MathSciNet  Google Scholar 

  9. Hà, H.V., Nguyen, T.T.: Atypical values at infinity of polynomial and rational functions on an algebraic surface in \({{\mathbb{R}}}^n\). Acta Math. Vietnam. 36(2), 537–553 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Hà, H.V., Pham, T.S.: Minimizing polynomial functions. Acta Math. Vietnam. 32(1), 71–82 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Hà, H.V., Pham, T.S.: Global optimization of polynomials using the truncated tangency variety and sums of squares. SIAM J. Optim. 19(2), 941–951 (2008)

    Article  MathSciNet  Google Scholar 

  12. Ishikawa, M., Nguyen, T.T., Pham, T.S.: Bifurcation sets of real polynomial functions of two variables and Newton polygons. J. Math. Soc. Jpn. 71(4), 1201–1222 (2019)

    Article  MathSciNet  Google Scholar 

  13. Jelonek, Z., Kurdyka, K.: Reaching generalized critical values of a polynomial. Math. Z. 276(1–2), 557–570 (2014)

    Article  MathSciNet  Google Scholar 

  14. Jelonek, Z., Tibăr, M.: Detecting asymptotic non-regular values by polar curves. Int. Math. Res. Not. IMRN 3, 809–829 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Joiţa, C., Tibăr, M.: Bifurcation values of families of real curves. Proc. R. Soc. Edinburgh Sect. A 147(6), 1233–1242 (2017)

    Article  MathSciNet  Google Scholar 

  16. Kim, D.S., Pham, T.S., Tuyen, N.V.: On the existence of Pareto solutions for polynomial vector optimization problems. Math. Program. 177(1-2), Ser. A, 321–341 (2019)

  17. King, H.C.: Topological type of isolated critical points. Ann. Math. (2) 107(2), 385–397 (1978)

    Article  MathSciNet  Google Scholar 

  18. King, H.C.: Topological type in families of germs. Invent. Math. 62(1), 1–13 (1980/81)

  19. Milnor, J.N.: Singular points of complex hypersurfaces. Ann. Math. Stud., No. 61 Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo (1968)

  20. Némethi, A., Zaharia, A.: On the bifurcation set of a polynomial function and Newton boundary. Publ. Res. Inst. Math. Sci. 26(4), 681–689 (1990)

    Article  MathSciNet  Google Scholar 

  21. Palmeira, C.F.B.: Open manifolds foliated by planes. Ann. Math. 107, 109–131 (1978)

    Article  MathSciNet  Google Scholar 

  22. Parusiński, A.: On the bifurcation set of complex polynomial with isolated singularities at infinity. Compositio Math. 97(3), 369–384 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Safey El Din, M.: Testing sign conditions on a multivariate polynomial and applications. Math. Comput. Sci. 1, 177–207 (2007)

    Article  MathSciNet  Google Scholar 

  24. Scheiblechner, P.: On a generalization of Stickelberger’s theorem. J. Symbolic Comput. 45(12), 1459–1470 (2010)

    Article  MathSciNet  Google Scholar 

  25. Siersma, D., Tibăr, M.: Singularities at infinity and their vanishing cycles. Duke Math. J. 80(3), 771–783 (1995)

    Article  MathSciNet  Google Scholar 

  26. Tibăr, M.: Topology at infinity of polynomial mappings and Thom condition. Compositio Math. 111, 89–109 (1998)

    Article  MathSciNet  Google Scholar 

  27. Tibăr, M.: Regularity at infinity of real and complex polynomial maps. In: Singularity Theory, The C.T.C Wall Anniversary Volume, LMS Lecture Notes Series 263, 249–264 (1999). Cambridge University Press

  28. Tibăr, M.: Polynomials and vanishing cycles. Cambridge Tracts in Mathematics, 170. Cambridge University Press, Cambridge (2007)

  29. Tibăr, M., Zaharia, A.: Asymptotic behaviour of families of real curves. Manuscripta Math. 99(3), 383–393 (1999)

    Article  MathSciNet  Google Scholar 

  30. Wall, C. T. C.: Singular points of plane curves. London Mathematical Society Student Texts, 63. Cambridge University Press, Cambridge (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Tibăr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

LRGD and MT acknowledge partial support by the Math-AmSud Grant 18-MATH-08. LRGD acknowledges the CNPq-Brazil Grants 401251/2016-0 and 304163/2017-1. CJ acknowledges the CNCS GrantPN-III-P4-ID-PCE-2016-0330. The authors acknowledge support by the Labex CEMPI (ANR-11-LABX-0007-01).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, L.R.G., Joiţa, C. & Tibăr, M. Atypical points at infinity and algorithmic detection of the bifurcation locus of real polynomials. Math. Z. 298, 1545–1558 (2021). https://doi.org/10.1007/s00209-020-02662-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02662-x

Keywords

Mathematics Subject Classification

Navigation