Skip to main content
Log in

Quantum-classical crossover in a nanospin system embedded in a Josephson \(\varphi _0\) junction

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The quantum–classical crossover of the escape rate is studied in a nanomagnetic Josephson \(\varphi _0\) junction within the framework of the spin-coherent-state path integral method. The nonlinear perturbation approach is employed to obtain the crossover boundary separating the first- and the second-order crossovers. The region for the first-order crossover is greatly suppressed by the bias current applied to the junction as well as the external magnetic field. These features can be tested using existing experimental techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Gunther, B. Barbara (eds.), Quantum Tunneling of Magnetization-QTM ’94 (Kluwer Academic, Dordrecht, 1995)

    Google Scholar 

  2. W. Linert, M. Verdaguer (eds.), Molecular Magnets Recent Heightlights (Springer, Wien, 2003)

    Google Scholar 

  3. D. Gatteschi, R. Sessoli, J. Villain (eds.), Molecular Nanomagnets (Oxford University Press, Oxford, 2006)

    Google Scholar 

  4. E.M. Chudnovsky, J. Tejada, Lectures on Magnetism (Rinton Press, Paramus, NJ, 2006)

    Google Scholar 

  5. J. Bartolomé, F. Luis, J.F. Fernández (eds.), Molecular Magnets-Physics and Applications (Springer, Heidelberg, 2014)

    Google Scholar 

  6. E.M. Chudnovsky, Phys. Rev. A 46, 8011 (1992)

    Article  ADS  Google Scholar 

  7. E.M. Chudnovsky, D.A. Garanin, Phys. Rev. Lett. 79, 4469 (1997)

    Article  ADS  Google Scholar 

  8. J.-Q. Liang, H.J.W. Müller-Kirsten, D.-K. Park, F. Zimmerschied, Phys. Rev. Lett. 81, 216 (1998)

    Article  ADS  Google Scholar 

  9. D.A. Garanin, X. Martínes Hidalgo, E.M. Chudnovsky, Phys. Rev. B 57, 13639 (1998)

    Article  ADS  Google Scholar 

  10. H.J.W. Müller-Kirsten, D.K. Park, J.M.S. Rana, Phys. Rev. B 60, 6662 (1999)

    Article  ADS  Google Scholar 

  11. G.-H. Kim, Phys. Rev. B 59, 11847 (1999)

    Article  ADS  Google Scholar 

  12. C.-S. Park, S.-K. Yoo, D.-H. Yoon, Phys. Rev. B 61, 11618 (2000)

    Article  ADS  Google Scholar 

  13. X. Martínes Hidalgo, E.M. Chudnovsky, J. Phys. Condens. Matter 12, 4243 (2000)

    Article  ADS  Google Scholar 

  14. S.A. Owerre, M.B. Paranjape, Phys. Lett. A 378, 1407 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. L. Bokacheva, A.D. Kent, M.A. Walters, Polyhedron 20, 1717 (2000)

    Article  Google Scholar 

  16. K.M. Mertes, Y. Zhong, M.P. Sarachik, Y. Paltiel, H. Shtrikman, E. Zeldov, E. Rumgerger, D.N. Hendrickson, Europhys. Lett. 55, 874 (2001)

    Article  ADS  Google Scholar 

  17. W. Wernsdorfer, M. Murugesu, G. Christou, Phys. Rev. Lett. 96, 057208 (2006)

    Article  ADS  Google Scholar 

  18. G.-H. Kim, Phys. Rev. B 67, 144413 (2003)

    Article  ADS  Google Scholar 

  19. G.-H. Kim, Phys. Rev. B 77, 104405 (2008)

    Article  ADS  Google Scholar 

  20. G.-H. Kim, J. Korean, Phys. Soc. 53, 2079 (2008)

    Google Scholar 

  21. A. Buzdin, Phys. Rev. Lett. 101, 107005 (2008)

    Article  ADS  Google Scholar 

  22. F. Konschelle, A. Buzdin, Phys. Rev. Lett. 102, 017001 (2009)

    Article  ADS  Google Scholar 

  23. E.M. Chudnovsky, Phys. Rev. B 93, 144422 (2016)

    Article  ADS  Google Scholar 

  24. G.-H. Kim, H.-Y. Choi, J. Magn. Magn. Mater. 491, 165535 (2019)

    Article  Google Scholar 

  25. D.A. Gorokhov, G. Blatter, Phys. Rev. B 56, 3130 (1997)

    Article  ADS  Google Scholar 

  26. J.S. Langer, Ann. Phys. (N.Y.) 41, 108 (1967)

    Article  ADS  Google Scholar 

  27. S. Coleman, Phys. Rev. D 15, 2929 (1977)

    Article  ADS  Google Scholar 

  28. C.G. Callan, S. Coleman, Phys. Rev. D 16, 1762 (1977)

    Article  ADS  Google Scholar 

  29. S. Coleman, Aspects of Symmetry, Chap. 7 (Cambridge University Press, New York, 1985)

    Book  Google Scholar 

  30. H.B. Nielsen, D. Rohrlich, Nucl. Phys. B 299, 471 (1988)

    Article  ADS  Google Scholar 

  31. K. Johnson, Ann. Phys. 192, 104 (1989)

    Article  ADS  Google Scholar 

  32. A. Barone, A.G. Paterno, Physics and Applications of the Josephosn Effect (Wiley, New York, 1982)

    Book  Google Scholar 

  33. K.K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon and Breach Science, Philadelphia, 1986)

    Google Scholar 

  34. C.P. Poole Jr., H.A. Farach, R.J. Creswick, Superconductivity (Academic Press, San Diego, 1995)

    Google Scholar 

  35. E.I. Rashba, Sov. Phys. Solid State 2, 1109 (1960)

    Google Scholar 

  36. YuA Bychkov, E.I. Rashba, JETP Lett. 39, 78 (1984)

    ADS  Google Scholar 

  37. The Gaussian integration is performed in the partition function (1) by noting [24] \(|\varphi | \ll 1\)

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03035555).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwang-Hee Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Expressions for the coefficients in the formulation of the problem

In this appendix, we summarize the coefficients for Eqs. (7) and (8) as:

$$\begin{aligned} \Phi _1= & {} \tilde{E}_{\theta \theta } \csc \theta _0,\nonumber \\ \Phi _2= & {} \frac{1 }{2}\left( \tilde{E}_{\theta \theta \theta }- 2 \Phi _1 \cos \theta _0\right) \csc \theta _0, \nonumber \\ \Phi _3= & {} \frac{1}{2} \tilde{E}_{\theta \phi \phi } \csc \theta _0,\nonumber \\ \Phi _4= & {} \frac{1}{6} \left( \tilde{E}_{\theta \theta \theta \theta }- 3 \Phi _2 \cos \theta _0\right) \csc \theta _0+ \frac{\Phi _1}{2} q(\theta _0) ,\nonumber \\ \Phi _5= & {} \frac{1}{2} \left( \tilde{E}_{\theta \theta \phi \phi } - 2 \Phi _3 \cos \theta _0\right) \csc \theta _0\end{aligned}$$
(A1)
$$\begin{aligned} \Theta _1= & {} - \tilde{E}_{\phi \phi } \csc \theta _0, \nonumber \\ \Theta _2= & {} -2 \Phi _3 -\Theta _1 \cot {\theta _0} ,\nonumber \\ \Theta _3= & {} -\frac{1}{6} \tilde{E}_{\phi \phi \phi \phi } \csc \theta _0,\nonumber \\ \Theta _4= & {} -\Phi _5 +(\Theta _2 -\Phi _3) \cot \theta _0+ \frac{\Theta _1}{2} q(\theta _0), \end{aligned}$$
(A2)

where \(q(\theta ) = 1- \cot \theta + 2 \cot ^2\theta\), \(E_\mathrm{eff} = \tilde{E}\), \(\tilde{E}_{\theta \theta }=[\partial ^2 \tilde{E}/\partial \theta ^2]_{\theta =\theta _0,\phi =0}\), \(\tilde{E}_{\theta \phi \phi }=[\partial ^3 \tilde{E}/\partial \theta \partial \phi ^2 ]_{\theta =\theta _0,\phi =0}\), and so on.

Let us first discuss the system in which \(\delta \theta\) is real and \(\delta \phi\) is imaginary to the first order in perturbation theory. Then, we can substitute \(\delta \theta \simeq a \theta _1 \cos (\omega \tau )\) and \(\delta \phi \simeq i a \phi _1 \sin (\omega \tau )\) into Eqs. (7) and (8) and obtain the relation:

$$\begin{aligned} \frac{\theta _1}{\phi _1} = \frac{\rho \omega }{\Phi _1} = \frac{\Theta _1}{\rho \omega }, \end{aligned}$$
(A3)

which gives the oscillation frequency \(\omega =\omega _0=\sqrt{\Phi _1 \Theta _1}/\rho\). That is, the oscillation frequency in this order dose not shift.

To find the change in the oscillation frequency, we need to investigate Eqs. (7) and (8) in terms of order higher than a. A simple analysis shows that \(\omega\) starts to change from \(\omega _0\) at the order of \(a^3\). Hence, plugging \(\delta \Omega\), which contains terms up to \(O(a^3)\), into Eqs. (7) and (8), we find Eq. (9) for the shift of the oscillation frequency, where:

$$\begin{aligned} t_1= & {} \frac{\Phi _3}{2 \Theta _1} - \frac{\Phi _2}{2 \Phi _1},\nonumber \\ t_2= & {} \frac{\Phi _3}{6\Theta _1}+\frac{\Phi _2}{6\Phi _1}+\frac{\Theta _2}{3\Theta _1},\nonumber \\ f_1= & {} 0\nonumber \\ f_2= & {} \frac{\Phi _1 \Phi _3 }{3 \Theta _1} + \frac{\Phi _1 \Theta _2}{6 \Theta _1} + \frac{\Phi _2}{3}, \end{aligned}$$
(A4)

which are related to the terms of order of \(a^2\) as:

$$\begin{aligned} \delta \theta\simeq & {} a \delta \theta _1 + a ^2 \delta \theta _2 + a^3 \delta \theta _3,\nonumber \\ \delta \phi\simeq & {} a \delta \phi _1 + a ^2 \delta \phi _2 + a^3 \delta \phi _3, \end{aligned}$$
(A5)

with

$$\begin{aligned} \delta \theta _1= & {} \theta _1 \cos (\omega \tau ), \nonumber \\ \delta \theta _2= & {} \theta ^{2}_{1} [t_1 + t_2 \cos (2 \omega \tau ) ], \nonumber \\ \delta \phi _1= & {} i \phi _1 \sin (\omega \tau ), \nonumber \\ \delta \phi _2= & {} i \theta ^{2}_{1} [f_1 + f_2 \sin (2 \omega \tau ) ]. \end{aligned}$$
(A6)

Appendix B: Parameters in the absence of the longitudinal magnetic field

The parameters for the crossover in Sect. 3.1 can be obtained using Eqs. (15) and (A1)–(A2):

$$\begin{aligned} \Phi _1= & {} 2 h_y + 2 i_x \cot \theta _0+ 2 \cos (2 \theta _0) \csc \theta _0, \nonumber \\ \Phi _2= & {} \frac{1}{2} \csc ^2 \theta _0\left[ 3 i_x + 4 \cos \theta _0+ i_x \cos (2 \theta _0) + h_y \sin (2 \theta _0) \right] , \nonumber \\ \Phi _3= & {} \cot \theta _0(h_y + 2 k \sin \theta _0), \nonumber \\ \Phi _4= & {} \frac{1}{3} \big [ 2 h_y + 5 (i_x + \cos \theta _0) \cot \theta _0+ 3 h_y \cot ^2 \theta _0\nonumber \\&\quad + 6 (i_x + \cos \theta _0) \cot ^3 \theta _0+ \sin \theta _0\big ], \nonumber \\ \Phi _5= & {} - h_y \csc ^2 \theta _0- 2 k \sin \theta _0, \end{aligned}$$
(B1)
$$\begin{aligned} \Theta _1= & {} -2 \Phi _3 \tan \theta _0, \nonumber \\ \Theta _2= & {} -2 k \cos \theta _0, \nonumber \\ \Theta _3= & {} -\frac{1}{6} \Theta _1, \nonumber \\ \Theta _4= & {} k \sin \theta _0. \end{aligned}$$
(B2)

Inserting them into Eq. (A4), we have the coefficients for \(\delta \Omega\) on the order of \(a^2\) given by:

$$\begin{aligned} t_1= & {} \frac{ 3 i_x + 4 \cos \theta _0+ i_x \cos ( 2 \theta _0) + h_y \sin (2 \theta _0)}{8 \sin \theta _0\left[ i_x \cos \theta _0+ \cos (2 \theta _0) + h_y \sin \theta _0\right] } \nonumber \\&\quad -\frac{ \cot \theta _0(h_y + 2 k \sin \theta _0)}{4(h_y + k \sin \theta _0) }, \nonumber \\ t_2= & {} - \frac{ 3 i_x + 4 \cos \theta _0+ i_x \cos (2 \theta _0) + h_y \sin (2 \theta _0)}{ 24 \sin \theta _0\left[ i_x \cos \theta _0+ \cos (2 \theta _0) + h_y \sin \theta _0\right] } \nonumber \\&\quad - \frac{ \cot \theta _0(h_y + 2 k \sin \theta _0)}{12(h_y + k \sin \theta _0) } + \frac{ k \cos \theta _0}{3(h_y + k \sin \theta _0) },\nonumber \\ f_2= & {} -\frac{1}{6} \csc ^2 \theta _0\big [ 4 i_x + 5 \cos \theta _0+ 2 i_x \cos (2 \theta _0) \nonumber \\&\quad + \cos (3 \theta _0) + 2 h_y \sin (2 \theta _0) \big ]. \end{aligned}$$
(B3)

Using Eqs. (B1), (B2), and (B3), we have the expression for \(g(i_x, h_y, k, \theta _0)\) in Eq. (20) and the oscillation frequency around the top of the energy barrier, Eq. (21), to third order.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, GH. Quantum-classical crossover in a nanospin system embedded in a Josephson \(\varphi _0\) junction. J. Korean Phys. Soc. 78, 219–225 (2021). https://doi.org/10.1007/s40042-020-00018-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-020-00018-6

Keywords

Navigation