Skip to main content
Log in

Analysis of the Intensity Range for Self-Focusing of Bessel–Gauss Laser Beams in Plasma

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We study the propagation dynamics of zeroth-order Bessel–Gauss laser beams in plasma in the relativistic ponderomotive regime of interaction. Based on the paraxial and Wentzel-Kramers-Brillouin approximations, we derive the nonlinear evolution equation governing the laser beam width parameter, in view of the parabolic equation approach. We predict the range of intensity for self-focusing of Bessel–Gauss laser beams with increase in plasma electron temperature. While analyzing the condition for self-trapping of Bessel–Gauss beams, we point out and discuss three regimes characterized by steady divergence, self-focusing, and oscillatory divergence of the laser-beam propagation in plasma. In particular, we consider the effect of the transverse component of the wave parameter in exploring the intensity range for self-focusing. The intensity range for self-focusing of Gaussian beam in the considered regime of interaction with plasma is also deduced as a particular case in our work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, Sov. Phys. Usp., 93, 609 (1968).

    Article  ADS  Google Scholar 

  2. H. Hora, Laser Part. Beams, 25, 37 (2007).

    Article  ADS  Google Scholar 

  3. S. Kaur, S. Yadav, and A. K. Sharma, Phys. Plasmas, 17, 053101 (2010).

    Article  ADS  Google Scholar 

  4. V. Malka, Phys. Plasma, 19, 055501 (2012).

    Article  ADS  Google Scholar 

  5. M. S. Sodha and A. Sharma, J. Plasma Phys., 74, 473 (2008).

    Article  ADS  Google Scholar 

  6. J. D. Lindl and P. K. Kaw, Phys. Fluids, 14, 371 (1971).

    Article  ADS  Google Scholar 

  7. P. Kaw and J. Dawson, Phys. Fluids, 13, 472 (1970).

    Article  ADS  Google Scholar 

  8. A. B. Borisov, A. V. Borovskiy, V. V. Korobkin, et al., Phys. Rev. Lett., 65, 1753 (1990).

    Article  ADS  Google Scholar 

  9. P. E. Young and P. R. Bolton, Phys. Rev. Lett., 77, 4556 (1996).

    Article  ADS  Google Scholar 

  10. C. E. Clayton, K.-C. Tzeng, D. Gordon, et al., Phys. Rev. Lett., 81, 100 (1998).

    Article  ADS  Google Scholar 

  11. K.-C. Tzeng and W. B. Mori, Phys. Rev. Lett., 81, 104 (1998).

    Article  ADS  Google Scholar 

  12. M. Kaluza, I. B. Foldes, E. Racz, et al., IEEE Trans. Plasma Sci., 33, 480 (2005).

    Article  ADS  Google Scholar 

  13. H. Habara, K. Adumi, T. Yabuuchi, et al., Phys. Rev. Lett., 97, 095004 (2006).

    Google Scholar 

  14. S. D. Patil, M. V. Takale, V. J. Fulari, et al., Appl. Phys. B, 111, 1 (2013).

    Article  ADS  Google Scholar 

  15. S. D. Patil and M. V. Takale, Phys. Plasmas, 20, 083101 (2013).

    Article  ADS  Google Scholar 

  16. S. D. Patil, M. V. Takale, V. J. Fulari, and T. S. Gill, Laser Part. Beams, 34, 669 (2016).

    Article  ADS  Google Scholar 

  17. S. D. Patil and M. V. Takale, AIP Conf. Proc., 1728, 020129 (2016).

    Article  Google Scholar 

  18. S. D. Patil, P. P. Chikode, and M. V. Takale, J. Opt., 47, 174 (2018).

    Article  Google Scholar 

  19. S. D. Patil, A. T. Valkunde, B. D. Vhanmore, et al., AIP Conf. Proc., 1953, 140046 (2018).

    Google Scholar 

  20. H. Kumar, M. Aggarwal, and T. S. Gill, Laser Part. Beams, 34, 426 (2016).

    Article  ADS  Google Scholar 

  21. M. Aggarwal, V. Goyal, R. Kashyap, et al., Optik, 208, 163137 (2020).

    Article  ADS  Google Scholar 

  22. S. D. Patil and M. V. Takale, Laser Phys. Lett., 10, 115402 (2013).

    Article  ADS  Google Scholar 

  23. M. Aggarwal, H. Kumar, R. Mahajan, et al., Laser Part. Beams, 36, 353 (2018).

    Article  ADS  Google Scholar 

  24. H. Kumar, M. Aggarwal, Richa, and T. S. Gill, J. Opt. Soc. Am. B, 35, 1635 (2018).

    Article  ADS  Google Scholar 

  25. B. D. Vhanmore, S. D. Patil, A. T. Valkunde, et al., Optik, 158, 574 (2018).

    Article  ADS  Google Scholar 

  26. V. Sharma, V. Thakur, and N. Kant, AIP Conf. Proc., 2136, 060017 (2019).

    Article  Google Scholar 

  27. K. M. Gavade, T. U. Urunkar, B. D. Vhanmore, et al., J. Appl. Spectrosc., 87, 499 (2020).

    Article  ADS  Google Scholar 

  28. Y. Ma, Z. He, and D. Liang, Opt. Laser Technol., 34, 579 (2002).

    Article  ADS  Google Scholar 

  29. T. Auguste, O. Gobert, and B. Carre, Phys. Rev. A, 78, 033411 (2008).

    Article  ADS  Google Scholar 

  30. C. Altucci, R. Bruzzese, D. DAntuoni, et al., J. Opt. Soc. Am. B, 17, 34 (2000).

    Article  ADS  Google Scholar 

  31. L. V. Dao, K. B. Dinh, and P. Hannaford, Phys. Plasmas, 95, 131114 (2009).

    Google Scholar 

  32. G. Kaya, N. Kaya, M. Sayrac, et al., AIP Adv., 6, 035001 (2016).

    Article  ADS  Google Scholar 

  33. R. Fallah and S. M. Khorashadizadeh, Contr. Plasma Phys., 58, 878 (2018).

    Article  ADS  Google Scholar 

  34. T. Tajima and J. M. Dawson, Phys. Rev. Lett., 43, 267 (1979).

    Article  ADS  Google Scholar 

  35. L. Ouahid, L. Dalil-Essakali, and A. Belafhal, Opt. Quantum Electron., 50, 398 (2018).

    Article  Google Scholar 

  36. B. Bokaei and A. R. Niknam, Phys. Plasmas, 21, 032309 (2014).

    Article  ADS  Google Scholar 

  37. S. D. Patil, A. T. Valkunde, B. D. Vhanmore, et al., AIP Conf. Proc., 2142, 110012 (2019).

    Article  Google Scholar 

  38. M. S. Sodha, A. K. Ghatak, and V. K. Tripathi, Prog. Opt., 13, 169 (1976).

    Article  ADS  Google Scholar 

  39. M. R. Jafari Milani, A. R. Niknam, and B. Bokaei, IEEE Trans. Plasma Sci., 42, 742 (2014).

    Article  ADS  Google Scholar 

  40. P. Kumar, K. Yu, R. Zgadzaj, et al., Phys. Plasmas, 26, 083106 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip D. Patil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.D., Vhanmore, B.D. & Takale, M.V. Analysis of the Intensity Range for Self-Focusing of Bessel–Gauss Laser Beams in Plasma. J Russ Laser Res 42, 45–52 (2021). https://doi.org/10.1007/s10946-020-09928-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09928-z

Keywords

Navigation