Skip to main content
Log in

Investigation of nanoformulation and incorporation potential of radiolabeled curcumin using HeLa and MDAH-2774 cells

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Nowadays plant origin compounds with anti-cancer properties come into prominence, among them is curcumin (CUR) with a remarkable anti-cancer activity against various cancers. CUR was nanoformulated (CUR-PLGA) by the polymer based poly(lactic-co-glycolic acid) (PLGA) and both CUR and CUR-PLGA were radiolabeled with iodine-131 radionuclide for investigation of their in vitro behaviour on Human cervix adenocarcinoma (HeLa) and Ovarian endometrioid adenocarcinoma (MDAH-2774) cell lines. The newly described radiolabeled CUR and CUR-PLGA may be initiative discovery of novel potential imaging and therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ghasemi F, Shafiee M, Banikazemi Z et al (2019) Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathol Res Pract 215:1–6

    Article  Google Scholar 

  2. Lin YG, Kunnumakkara AB, Nair A et al (2007) Curcumin ınhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-B pathway. Clin Cancer Res 13:3423–3430

    Article  CAS  Google Scholar 

  3. Pathak K, Akhtar N (2018) Nanocarriers for the effective treatment of cervical cancer: research advancements and patent analysis. Recent Pat Drug Deliv Formul 12:93–109

    Article  CAS  Google Scholar 

  4. Efferth T, Saeed MEM, Mirghani E et al (2017) Integration of phytochemicals and phytotherapy into cancer precision medicine. Oncotarget 8:50284–50304

    Article  Google Scholar 

  5. Alibolandi M, Hoseini F, Mohammadi M et al (2018) Curcumin-entrapped MUC-1 aptamer targeted dendrimer-gold hybrid nanostructure as a theranostic system for colon adenocarcinoma. Int J Pharm 549:67–75

    Article  CAS  Google Scholar 

  6. Park BH, Lim JE, Jeon HG et al (2016) Curcumin potentiates antitumor activity of cisplatin in bladder cancer cell lines via ROS-mediated activation of ERK1/2. Oncotarget 7:63870–63886

    Article  Google Scholar 

  7. Adiwidjaja J, McLachlan AJ, Boddy AV (2017) Curcumin as a clinically-promising anti-cancer agent: pharmacokinetics and drug interactions. Expert Opin Drug Metab Toxicol 13:953–972

    Article  CAS  Google Scholar 

  8. Aggarwal B, Kumar A, Bharti A (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23:363–398

    CAS  PubMed  Google Scholar 

  9. Biber Muftuler FZ, Yurt Kilcar A, Unak P (2015) A perspective on plant origin radiolabeled compounds, their biological affinities and interaction between plant extracts with radiopharmaceuticals. J Radioanal Nucl Chem 306:1–9

    Article  CAS  Google Scholar 

  10. Vitaglione P, Barone Lumaga R, Ferracane R et al (2012) Curcumin bioavailability from enriched bread: the effect of microencapsulated ıngredients. J Agric Food Chem 60:3357–3366

    Article  CAS  Google Scholar 

  11. Shen L, Liu C-C, An C-Y, Ji H-F (2016) How does curcumin work with poor bioavailability? Clues from experimental and theoretical studies. Sci Rep 6:20872

    Article  CAS  Google Scholar 

  12. Suo A, Qian J, Xu M et al (2017) Folate-decorated PEGylated triblock copolymer as a pH/reduction dual-responsive nanovehicle for targeted intracellular co-delivery of doxorubicin and Bcl-2 siRNA. Mater Sci Eng C 76:659–672

    Article  CAS  Google Scholar 

  13. Feng T, Wei Y, Lee RJ, Zhao L (2017) Liposomal curcumin and its application in cancer. Int J Nanomed 12:6027–6044

    Article  CAS  Google Scholar 

  14. Zhang H, Zhang Y, Chen Y et al (2018) Glutathione-responsive self-delivery nanoparticles assembled by curcumin dimer for enhanced intracellular drug delivery. Int J Pharm 549:230–238

    Article  CAS  Google Scholar 

  15. Wang L, Xu X, Zhang Y et al (2013) Encapsulation of curcumin within poly(amidoamine) dendrimers for delivery to cancer cells. J Mater Sci Mater Med 24:2137–2144

    Article  CAS  Google Scholar 

  16. Sun M, Su X, Ding B et al (2012) Advances in nanotechnology-based delivery systems for curcumin. Nanomedicine 7:1085–1100

    Article  CAS  Google Scholar 

  17. McCarron PA, Hall M (2004) Pharmaceutical nanotechnology. Encycl Nanosci Nanotechnol 8:469–487

    CAS  Google Scholar 

  18. Mérian J, Gravier J, Navarro F, Texier I (2012) Fluorescent nanoprobes dedicated to in vivo imaging: from preclinical validations to clinical translation. Molecules 17:5564–5591

    Article  Google Scholar 

  19. Saha GB (2018) Fundamentals of nuclear pharmacy, 7 edn. Springer. https://doi.org/10.1007/978-3-319-57580-3

  20. Blankenberg FG, Strauss HW (2002) Nuclear medicine applications in molecular imaging. J Magn Reson Imaging 16:352–361

    Article  Google Scholar 

  21. Huang C, Chen F, Zhang L et al (2020) 99mTc radiolabeled HA/TPGS-based curcumin-loaded nanoparticle for breast cancer synergistic theranostics: design, in vitro and in vivo evaluation. Int J Nanomed 15:2987–2998

    Article  CAS  Google Scholar 

  22. Mukerjee A, Vishwanatha JK (2009) Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res 29:3867–3875

    CAS  PubMed  Google Scholar 

  23. Luz PP, Magalhães LG, Pereira AC et al (2012) Curcumin-loaded into PLGA nanoparticles. Parasitol Res 110:593–598

    Article  Google Scholar 

  24. Punfa W, Yodkeeree S, Pitchakarn P et al (2012) Enhancement of cellular uptake and cytotoxicity of curcumin-loaded PLGA nanoparticles by conjugation with anti-P-glycoprotein in drug resistance cancer cells. Acta Pharmacol Sin 33:823–831

    Article  CAS  Google Scholar 

  25. Yallapu MM, Gupta BK, Jaggi M, Chauhan SC (2010) Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci 351:19–29

    Article  CAS  Google Scholar 

  26. Yallapu MM, Maher DM, Sundram V et al (2010) Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J Ovarian Res 3:11

    Article  Google Scholar 

  27. Zaman MS, Chauhan N, Yallapu MM et al (2016) Curcumin nanoformulation for cervical cancer treatment. Sci Rep 6:1–14

    Article  Google Scholar 

  28. Ganta S, Amiji M (2009) Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm 6:928–939

    Article  CAS  Google Scholar 

  29. Luong D, Kesharwani P, Alsaab HO et al (2017) Folic acid conjugated polymeric micelles loaded with a curcumin difluorinated analog for targeting cervical and ovarian cancers. Colloids Surf B Biointerfaces 157:490–502

    Article  CAS  Google Scholar 

  30. Ayan AK, Yenilmez A, Eroglu H (2017) Evaluation of radiolabeled curcumin-loaded solid lipid nanoparticles usage as an imaging agent in liver-spleen scintigraphy. Mater Sci Eng C Mater Biol Appl 75:663–670

    Article  CAS  Google Scholar 

  31. Singh UV, Bisht KS, Rao S et al (1996) Plumbagin-loaded PLGA microspheres with reduced toxicity and enhanced antitumour efficacy in mice. Pharm Pharmacol Commun 2:407–440

    CAS  Google Scholar 

  32. Yildiz G, Yurt Kilcar A, Medine EI et al (2017) PLGA encapsulation and radioiodination of indole-3-carbinol: investigation of anticancerogenic effects against MCF7, Caco2 and PC3 cells by in vitro assays. J Radioanal Nucl Chem 311:1043–1052

    Article  CAS  Google Scholar 

  33. Dervis E, Yurt Kilcar A, Medine EI et al (2017) In vitro ıncorporation of radioiodinated eugenol on adenocarcinoma cell lines (Caco2, MCF7, and PC3). Cancer Biother Radiopharm 32(3):1–7

    Article  Google Scholar 

  34. Karatay KB, Kılçar AY, Derviş E, Müftüler FZB (2020) Radioiodinated ginger compounds (6-gingerol and 6-shogaol) and ıncorporation assays on breast cancer cells. Anticancer Agents Med Chem 20:1129–1139

    Article  CAS  Google Scholar 

  35. Kumar C, Subramanian S, Samuel G (2016) Evaluation of radioiodinated curcumin for its potential as a tumor-targeting radiopharmaceutical. J Radiat Cancer Res 7:112

    Article  Google Scholar 

  36. Brannon-Peppas L (1995) Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. Int J Pharm 116:1–9

    Article  CAS  Google Scholar 

  37. Peltonen L, Koistinen P, Karjalainen M et al (2002) The effect of cosolvents on the formulation of nanoparticles from low-molecular-weight poly(l)lactide. AAPS PharmSciTech 3:E32

    Article  Google Scholar 

  38. Yurt Kilcar A, Tekin V, Biber Muftuler FZ, Medine EI (2016) 99mTc labeled plumbagin: estrogen receptor dependent examination against breast cancer cells and comparison with PLGA encapsulated form. J Radioanal Nucl Chem 308:13–22

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Current work is supported by Ege University Scientific Research Projects Coordination (Contract No. 2017 TIP 044). The authors thank to Öykü Madenci, Fatmagül Gedik and Neşe Kavçar for the technical assistance during the assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazilet Zumrut Biber Muftuler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gokulu, S.G., Yurt Kilcar, A., Bilgi, A. et al. Investigation of nanoformulation and incorporation potential of radiolabeled curcumin using HeLa and MDAH-2774 cells. J Radioanal Nucl Chem 327, 299–305 (2021). https://doi.org/10.1007/s10967-020-07509-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07509-7

Keywords

Navigation