Skip to main content
Log in

Uranium removal from aqueous medium using Co0.5Mn0.5Fe2O4 nanoparticles

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Co0.5Mn0.5Fe2O4 nanoparticles were successfully synthesized for uranium removal from aquatic media. The Co0.5Mn0.5Fe2O4 was analyzed by XRD, EDX, FTIR, and DLS. The DLS analysis of Co0.5Mn0.5Fe2O4 showed the size of nanoparticles in the range of 3–20 nm. The removal of U(VI) ions by Co0.5Mn0.5Fe2O4 was studied at different experimental conditions. The initial uranium concentrations, pH, and time parameters have a significant effect on the removal process. Isotherms data showed a favorable adsorption process of second-order kinetics. The results show that Co0.5Mn0.5Fe2O4 is an effective adsorbent with a higher affinity toward the removal of uranium ions, adsorption capacities of 104 mg/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Eisenbud M, Gesell T (1997) Environmental radioactivity from natural, industrial and military sources. Academic Press, Cambridge

    Google Scholar 

  2. Friedlander G, Kennedy JW, Macias ES, Miller JM (1981) Nuclear and radiochemistry. Wiley, New York

    Google Scholar 

  3. Donia AM, Atia AA, Moussa EMM, El-Sherif AM, Abd El-Magied MO (2009) Removal of Uranium(VI) from aqueous solutions using glycidyl methacrylate chelating resins. Hydrometallurgy 95:183–189. https://doi.org/10.1016/j.hydromet.2008.05.037

    Article  CAS  Google Scholar 

  4. Abd El-Magied MO, Dhmees AS, Abd El-Hamid AAM, Eldesouky EM (2018) Uranium extraction by sulfonated mesoporous silica derived from blast furnace slag. J Nucl Mater 509:295–304. https://doi.org/10.1016/j.jnucmat.2018.06.034

    Article  CAS  Google Scholar 

  5. Dhmees AS, Rashad AM, Eliwa AA, Zawrahc MF (2019) Preparation and characterization of nano SiO2@CeO2 extracted from blast furnace slag and uranium extraction waste for wastewater treatment. Ceram Int 45:7309–7317. https://doi.org/10.1016/j.ceramint.2019.01.014

    Article  CAS  Google Scholar 

  6. Zeng D, Dai Y, Zhang Z, Wang Y, Cao X, Liu Y (2020) Magnetic solid-phase extraction of U(VI) in aqueous solution by Fe3O4@hydroxyapatite. J Radioanal Nucl Chem 324:1329–1337. https://doi.org/10.1007/s10967-020-07148-y

    Article  CAS  Google Scholar 

  7. Arica MY, Bayramoglu G (2016) Polyaniline coated magnetic carboxymethylcellulose beads for selective removal of uranium ions from aqueous solution. J Radioanal Nucl Chem 310:711–724. https://doi.org/10.1007/s10967-016-4828-z

    Article  CAS  Google Scholar 

  8. Bayramoglu G, Arica MY (2016) MCM-41 silica particles grafted with polyacrylonitrile: modification into amidoxime and carboxyl groups for enhanced uranium removal from aqueous medium. Microporous Mesoporous Mater 226:117–124. https://doi.org/10.1016/j.micromeso.2015.12.040

    Article  CAS  Google Scholar 

  9. Bayramoglu G, Arica MY (2017) Polyethylenimine and tris(2-aminoethyl)amine modified p(GA–EGMA) microbeads for sorption of uranium ions: equilibrium, kinetic and thermodynamic studies. J Radioanal Nucl Chem 312:293–303. https://doi.org/10.1007/s10967-017-5216-z

    Article  CAS  Google Scholar 

  10. Bayramoglu G, AricaM Y (2019) Star type polymer grafted and polyamidoxime modified silica coated-magnetic particles for adsorption of U(VI) ions from solution. Chem Eng Res Des 147:146–159. https://doi.org/10.1016/j.cherd.2019.04.039

    Article  CAS  Google Scholar 

  11. Abd El-Magied MO (2016) Sorption of uranium ions from their aqueous solution by resins containing nanomagnetite particles. J Eng. https://doi.org/10.1155/2016/7214348

    Article  Google Scholar 

  12. Semenkova A, Belousov P, Rzhevskaia A, Izosimova Y, Maslakov K, Tolpeshta I, Romanchuk A, Krupskaya V (2020) U(VI) sorption onto natural sorbents. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-020-07318-y

    Article  Google Scholar 

  13. Al-Anber MA, Al-Momani IF, Zaitoun MA, Al-Qaisi W (2020) Inorganic silica gel functionalized tris(2-aminoethyl)amine moiety for capturing aqueous uranium (VI) ion. J Radioanal Nucl Chem 325:605–623. https://doi.org/10.1007/s10967-020-07270-x

    Article  CAS  Google Scholar 

  14. Abd El-Magied MO, Mohammaden TF, El-Aassy IK, Gad HMH, Hassan AM, Mahmoud MA (2017) Decontamination of uranium-polluted groundwater by chemically-enhanced, sawdust-activated carbon. Colloids Interfaces 1:1–17. https://doi.org/10.3390/colloids1010002

    Article  CAS  Google Scholar 

  15. Sun G, Zhou L, Tang X, Le Z, Liu Z, Huang G (2020) In situ formed magnetic chitosan nanoparticles functionalized with polyethyleneimine for effective U(VI) sorption. J Radioanal Nucl Chem 325:595–604. https://doi.org/10.1007/s10967-020-07230-5

    Article  CAS  Google Scholar 

  16. Hu X, Wang Y, Wu P, Li Y, Tu H, Wang C, Yuan D, Liu Y, Cao X, Liu Z (2020) Preparation of graphene/graphene nanoribbons hybrid aerogel and its application for the removal of uranium from aqueous solutions. J Radioanal Nucl Chem 325:207–215. https://doi.org/10.1007/s10967-020-07208-3

    Article  CAS  Google Scholar 

  17. Atia BM, Gado MA, Abd El-Magied MO, Elshehy EA (2019) Highly efficient extraction of uranyl ions from aqueous solutions using multi-chelators functionalized graphene oxide. Sep Sci Technol 55(2019):2746–2757. https://doi.org/10.1080/01496395.2019.1650769

    Article  CAS  Google Scholar 

  18. Yousef LA, Bakry AR, Abd El-Magied MO (2020) Uranium(VI) recovery from its leach liquor using zirconium molybdophosphate composite: kinetic, equilibrium and thermodynamic studies. J Radioanal Nucl Chem 323:549–556. https://doi.org/10.1007/s10967-019-06871-5

    Article  CAS  Google Scholar 

  19. Chaudhuri RG, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433. https://doi.org/10.1021/cr100449n

    Article  CAS  Google Scholar 

  20. Deraz NM (2018) Tailoring the physicochemical and magnetic properties of an Mn substituted cobalt ferrite system. Int Ceram Rev 67:14–19. https://doi.org/10.1007/s42411-018-0017-0

    Article  CAS  Google Scholar 

  21. Vlazan P, Miron I, Sfirloaga P (2015) Cobalt ferrite substituted with Mn: synthesis method, characterization and magnetic properties. Ceram Int 41:3760–3765. https://doi.org/10.1016/j.ceramint.2014.11.051

    Article  CAS  Google Scholar 

  22. Marczenko Z, Balcerzak M (2000) Separation, preconcentration and spectrophotometry in inorganic analysis. Elsevier, Amsterdam

    Google Scholar 

  23. Rezk MM, Dhmees AS, Abd El-Magied MO, Manaa EA, El-Gendy HS (2020) The influence of cobalt manganese ferrite nanoparticles (Co0.5Mn0.5Fe2O4) on reduction of hazardous effects of vanadate in adult rats. Toxicol Res 9:81–90. https://doi.org/10.1093/toxres/tfaa007

    Article  Google Scholar 

  24. Ramay SM, Saleem M, Atiq S, Siddiqi SA, Naseem S, Anwar MS (2011) Influence of temperature on structural and magnetic properties of Co0.5Mn0.5Fe2O4 ferrites. Bull Mater Sci 34:1415–1419. https://doi.org/10.1007/s12034-011-0337-4

    Article  CAS  Google Scholar 

  25. Meinrath G (1998) Aquatic chemistry of uranium. Geoscience 1:1

    Google Scholar 

  26. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1980) Advanced inorganic chemistry. Wiley, New York

    Google Scholar 

  27. Sadeek SA, El-Sayed MA, Amine MM, Abd El- Magied MO (2014) Selective solid-phase extraction of U(VI) by amine functionalized glycidyl methacrylate. J Environ Chem Eng 2:293–303. https://doi.org/10.1016/j.jece.2013.12.015

    Article  CAS  Google Scholar 

  28. Tag El-Din AF, Elshehy EA, Abd El-Magied MO, Atia AA, El- Khouly ME (2018) Decontamination of radioactive cesium ions using ordered mesoporous monetite. RSC Adv 8:19041–19050. https://doi.org/10.1039/C8RA02707B

    Article  CAS  Google Scholar 

  29. Wang J, Guo X (2020) Adsorption kinetic models: physical meanings, applications, and solving methods. J Hazard Mater 390:122156. https://doi.org/10.1016/j.jhazmat.2020.122156

    Article  CAS  PubMed  Google Scholar 

  30. Valderrama C, Gamisans X, de las Heras X, Farr A, Cortina JL (2008) Sorption kinetics of polycyclic aromatic hydrocarbons removal using granular activated carbon: intraparticle diffusion coefficients. J Hazard Mater 157(2008):386–396. https://doi.org/10.1016/j.jhazmat.2007.12.119

    Article  CAS  PubMed  Google Scholar 

  31. Abd El-Magied MO, Elshehy EA, Manaa EA, Tolba AA, Atia AA (2016) Kinetics and thermodynamics studies on the recovery of thorium ions using amino resins with magnetic properties. Ind Eng Chem Res 55:11338–11345. https://doi.org/10.1021/acs.iecr.6b02977

    Article  CAS  Google Scholar 

  32. Elshehy EA, Shenashen MA, Abd El-Magied MO, El-Nahas AM, Tolan DA, Halada K, Atia AA, El-Safty SA (2017) Selective recovery of silver(I) ions from e-waste using cubically multi-thiolated cage mesoporous monoliths. Eur J Inorg Chem 2017:4823–4833. https://doi.org/10.1002/ejic.201700644

    Article  CAS  Google Scholar 

  33. Shao DD, Jiang ZQ, Wang XK, Li JX, Meng YD (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO22 + from aqueous solution. J Phys Chem B 113:860–864. https://doi.org/10.1021/jp8091094

    Article  CAS  Google Scholar 

  34. Sun YB, Yang ST, Sheng GD, Guo ZQ, Wang XK (2012) The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes. J Environ Radioact 105:40–47. https://doi.org/10.1016/j.jenvrad.2011.10.009

    Article  CAS  PubMed  Google Scholar 

  35. Fan FL, Qin Z, Bai J, Rong WD, Fan FY, Tian W, Wu XL, Zhao L (2012) Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles. J Environ Radioact 106:40–46. https://doi.org/10.1016/j.jenvrad.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  36. Zong P, Wang S, Zhao Y, Wang H, Pan H, He C (2013) Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions. Chem Eng J 220:45–52. https://doi.org/10.1016/j.cej.2013.01.038

    Article  CAS  Google Scholar 

  37. Lingamdinne LP, Yu-Lim Choi, Kim IS, Yang JK, KoduruJ R, Chang Y (2016) Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides. J Hazard Mater 326:145–156. https://doi.org/10.1016/j.jhazmat.2016.12.035

    Article  CAS  PubMed  Google Scholar 

  38. Bai J, Chu J, Yin X, Wang J, Tian W, Huang Q, Jia Z, Wu X, Guo H, Qin Z (2020) Synthesis of amidoximated polyacrylonitrile nanoparticle/grapheme composite hydrogel for selective uranium sorption from saline lake brine. Chem Eng J 391:123553. https://doi.org/10.1016/j.cej.2019.123553

    Article  CAS  Google Scholar 

  39. Janu VC, Meena RK, Kumar N, Sharma RK (2020) Surface fluorinated hematite for uranium removal from radioactive effluent. J Environ Chem Eng 8:104218. https://doi.org/10.1016/j.jece.2020.104218

    Article  CAS  Google Scholar 

  40. Abd El-Magied MO, Mansour A, Alsayed F, Atrees MS (2018) Biosorption of beryllium from aqueous solutions onto modified chitosan resin: equilibrium, kinetic and thermodynamic study. J Dispers Sci Technol 39:1597–1605. https://doi.org/10.1080/01932691.2018.1452757

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud O. Abd El-Magied.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El-Magied, M.O., Manaa, ES.A., Youssef, M.A.M. et al. Uranium removal from aqueous medium using Co0.5Mn0.5Fe2O4 nanoparticles. J Radioanal Nucl Chem 327, 745–753 (2021). https://doi.org/10.1007/s10967-020-07571-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07571-1

Keywords

Navigation