Skip to main content
Log in

Superconducting Niobium Calorimeter for Studies of Adsorbed Helium Monolayers

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We developed a calorimeter with a vacuum container made of superconducting niobium (Nb) to study monolayers of helium adsorbed on graphite which are prototypical two-dimensional quantum matters below 1 K. Nb was chosen because of its small specific heat in the superconducting state. It is crucially important to reduce the addendum heat capacity (\(C_\mathrm{{ad}}\)) when the specific surface area of substrate is small. Here we show details of design, construction and results of \(C_\mathrm{{ad}}\) measurements of the Nb calorimeter down to 40 mK. The measured \(C_\mathrm{{ad}}\) was sufficiently small so that we can use it for heat capacity measurements on helium monolayers in a wide temperature range below 1 K. We found a relatively large excess heat capacity in \(C_\mathrm{{ad}}\), which was successfully attributed to atomic tunneling of hydrogen (H) and deuterium (D) between trap centers near oxygen or nitrogen impurities in Nb. The tunnel frequencies of H and D deduced by fitting the data to the tunneling model are consistent with the previous experiments on Nb doped with H or D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Bretz, J.G. Dash, D.C. Hickernell, E.O. McLean, O.E. Vilches, Phys. Rev. A 8, 1589 (1973). https://doi.org/10.1103/PhysRevA.8.1589

    Article  ADS  Google Scholar 

  2. D.S. Greywall, Phys. Rev. B 41, 1842 (1990). https://doi.org/10.1103/PhysRevB.41.1842

    Article  ADS  Google Scholar 

  3. D.S. Greywall, Phys. Rev. B 47, 309 (1993). https://doi.org/10.1103/PhysRevB.47.309

    Article  ADS  Google Scholar 

  4. H. Godfrin, H.J. Lauter, Prog. Low Temp. Phys. 14, 213 (1995). https://doi.org/10.1016/S0079-6417(06)80018-1

    Article  Google Scholar 

  5. H. Fukuyama, J. Phys. Soc. Jpn. 77, 111013 (2008). https://doi.org/10.1143/JPSJ.77.111013

    Article  ADS  Google Scholar 

  6. D. Sato, D. Tsuji, S. Takayoshi, K. Obata, T. Matsui, H. Fukuyama, J. Low Temp. Phys. 158, 201 (2010). https://doi.org/10.1007/s10909-009-0013-x

    Article  ADS  Google Scholar 

  7. D. Sato, K. Naruse, T. Matsui, H. Fukuyama, Phys. Rev. Lett. 109, 235306 (2012). https://doi.org/10.1103/PhysRevLett.109.235306

    Article  ADS  Google Scholar 

  8. M. Ruggeri, S. Moroni, M. Boninsegni, Phys. Rev. Lett. 111, 045303 (2013). https://doi.org/10.1103/PhysRevLett.111.045303

    Article  ADS  Google Scholar 

  9. M. Ruggeri, E. Vitali, D.E. Galli, M. Boninsegni, S. Moroni, Phys. Rev. B 93, 104102 (2016). https://doi.org/10.1103/PhysRevB.93.104102

    Article  ADS  Google Scholar 

  10. M.C. Gordillo, J. Boronat, Phys. Rev. Lett. 116, 145301 (2016). https://doi.org/10.1103/PhysRevLett.116.145301

    Article  ADS  Google Scholar 

  11. M.C. Gordillo, J. Boronat, Phys. Rev. B 94, 165421 (2016). https://doi.org/10.1103/PhysRevB.94.165421

    Article  ADS  Google Scholar 

  12. B.K. Bhattacharyya, F.M. Gasparini, Phys. Rev. B 31, 2719 (1985). https://doi.org/10.1103/PhysRevB.31.2719

    Article  ADS  Google Scholar 

  13. G.A. Csáthy, E. Kim, M.H. Chan, Phys. Rev. Lett. 88, 045301 (2002). https://doi.org/10.1103/PhysRevLett.88.045301

    Article  ADS  Google Scholar 

  14. M. Bretz, Phys. Rev. Lett. 38, 501 (1977). https://doi.org/10.1103/PhysRevLett.38.501

    Article  ADS  Google Scholar 

  15. M. Morishita, T. Takagi, Phys. Rev. Lett. 87, 185301 (2001). https://doi.org/10.1103/PhysRevLett.87.185301

    Article  ADS  Google Scholar 

  16. A. Casey, H. Patel, J. Nyéki, B.P. Cowan, J. Saunders, Phys. Rev. Lett. 90, 115301 (2003). https://doi.org/10.1103/PhysRevLett.90.115301

    Article  ADS  Google Scholar 

  17. S. Nakamura, K. Matsui, T. Matsui, H. Fukuyama, Phys. Rev. B 94, 180501 (2016). https://doi.org/10.1103/PhysRevB.94.180501

    Article  ADS  Google Scholar 

  18. J. Nyéki, A. Phillis, A. Ho, D. Lee, P. Coleman, J. Parpia, B. Cowan, J. Saunders, Nat. Phys. 13, 455 (2017). https://doi.org/10.1038/nphys4023

    Article  Google Scholar 

  19. S. Nakamura, K. Matsui, T. Matsui, H. Fukuyama, J. Phys. Conf. Ser. 400, 032061 (2012). https://doi.org/10.1088/1742-6596/400/3/032061

    Article  Google Scholar 

  20. F. Pobell, Matter and Methods at Low Temperatures (Springer, New York, 2007)

    Book  Google Scholar 

  21. A.C. Ehrlich, J. Mater. Sci. 9, 1064 (1974). https://doi.org/10.1007/BF00552819

    Article  ADS  Google Scholar 

  22. K. Wang, R.R. Reeber, Mater. Sci. Eng. R Rep. 23, 101 (1998). https://doi.org/10.1016/S0927-796X(98)00011-4

    Article  Google Scholar 

  23. S. Nakamura, K. Matsui, T. Matsui, H. Fukuyama, J. Low Temp. Phys. 171, 711 (2013). https://doi.org/10.1007/s10909-012-0847-5

    Article  ADS  Google Scholar 

  24. D.S. Greywall, P.A. Busch, Phys. Rev. Lett. 67, 3535 (1991). https://doi.org/10.1103/PhysRevLett.67.3535

    Article  ADS  Google Scholar 

  25. G.J. Sellers, A.C. Anderson, H.K. Birnbaum, Phys. Rev. B 10, 2771 (1974). https://doi.org/10.1103/PhysRevB.10.2771

    Article  ADS  Google Scholar 

  26. D.L. Martin, Phys. Rev. 170, 650 (1968). https://doi.org/10.1103/PhysRev.170.650

    Article  ADS  Google Scholar 

  27. B.J. Van Der Hoeven, P.H. Keesom, J.W. McClure, G. Wagoner, Phys. Rev. 152, 796 (1966). https://doi.org/10.1103/PhysRev.152.796

    Article  ADS  Google Scholar 

  28. M.L. Siqueira, R.E. Rapp, Rev. Sci. Instrum. 62, 2499 (1991). https://doi.org/10.1063/1.1142224

    Article  ADS  Google Scholar 

  29. H. Wipf, K. Neumaier, Phys. Rev. Lett. 52, 1308 (1984). https://doi.org/10.1103/PhysRevLett.52.1308

    Article  ADS  Google Scholar 

  30. A.M. Stoneham, Rev. Mod. Phys. 41, 82 (1969). https://doi.org/10.1103/RevModPhys.41.82

    Article  ADS  Google Scholar 

  31. H. Wipf, S.M. Shapiro, S.K. Satija, W. Thomlinson, Phys. Rev. Lett. 46, 947 (1981)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Sachiko Nakamura for helpful discussions and sharing her technical experiences on the construction of the previous Nylon calorimeter with us. The authors appreciate Megumi A. Yoshitomi for her contributions to the early stage of this work. We also thank Ryo Toda and Satoshi Murakawa for their valuable discussions and the machine shop of the School of Science, the University of Tokyo for machining the Nb calorimeter. This work was financially supported by JSPS KAKENHI Grant Number JP18H01170. J.U. was supported by Japan Society for the Promotion of Science (JSPS) through Program for Leading Graduate Schools (MERIT) and Grant-in-Aid for JSPS Fellows JP20J12304.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Usami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usami, J., Tokeshi, K., Matsui, T. et al. Superconducting Niobium Calorimeter for Studies of Adsorbed Helium Monolayers. J Low Temp Phys 203, 1–10 (2021). https://doi.org/10.1007/s10909-020-02558-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02558-4

Keywords

Navigation