Skip to main content

Advertisement

Log in

Switchable and Enhanced Absorption via Qubit-Mechanical Nonlinear Interaction in a Hybrid Optomechanical System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

A Correction to this article was published on 08 February 2021

This article has been updated

Abstract

We analytically investigate the features of the output field of a hybrid optomechanical system (HOMS) comprising a typical optomechanical component and a superconducting qubit which is coupled with the membrane (which is also excited by driving field) through nonlinear interaction. The nonlinear interaction leads to generate an additional OMIT window. We report an effective scheme to modulate the optical response by suitable adjustment of the intensity and the phase of mechanical driving field. Interestingly, the effect of mechanical driving field is to enhance the absorption(amplification) either in the red(blue)-detuned regions or in the blue(red)-detuned regions simultaneously depending upon the relative phase and intensity of the mechanical driving field. Furthermore, the interference effects show that the transmission of the signal field can be greatly enhanced or ceased to exist in either side of the resonance point. In addition, relative phase can significantly tune the signal field’s transmission spectrum. We find that the phase effect around the sideband regions is much prominent than at the opacity point. The study of the manipulating the transmission spectra in such HOMS proves that the proposed scheme can be utilized in optical switches/transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Multimode optomechanical system in the quantum regime. Rev. Mod. Phys. 86, 1391–1452 (2014)

    Article  ADS  Google Scholar 

  2. Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically Induced Transparency. Science 330, 1520–1523 (2010)

    Article  ADS  Google Scholar 

  3. Fan, L., Fong, K.Y., Poot, M., Tang, H.X.: Cascaded optical transparency in multimode-cavity optomechanical systems. Nat. Commun. 6, 5850 (2015)

    Article  ADS  Google Scholar 

  4. Xiong, H., Wu, Y.: Fundamentals and applications of optomechanically induced transparency. Appl. Phys. Rev. 5, 031305 (2018)

    Article  ADS  Google Scholar 

  5. Agarwal, G.S., Huang, S.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A. 81, 041803 (2010)

    Article  ADS  Google Scholar 

  6. Huang, S., Agarwal, G.S.: Electromagnetically induced transparency from two phonon processes in quadratically coupled membranes. Phys. Rev. A. 83, 023823 (2011)

    Article  ADS  Google Scholar 

  7. Gigan, S.: Self-cooling of a micromirror by radiation pressure. Nature 444, 67 (2006)

    Article  ADS  Google Scholar 

  8. Schliesser, A.: Resolved-sideband cooling of a micromechanical oscillator. Nat. Physics. 4, 415 (2008)

    Article  ADS  Google Scholar 

  9. Jia, W.Z., Wang, Z.D.: Single-photon transport in a one-dimensional waveguide coupling to a hybrid atom-optomechanical system. Phys. Rev. A. 88, 063821 (2013)

    Article  ADS  Google Scholar 

  10. Safavi-Naeini, A.H., Mayer Alegre, T.P., Winger, M., Painter, O.: Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity. Appl. Phys. Lett. 97, 181106 (2010)

    Article  ADS  Google Scholar 

  11. Safavi-Naeini, A.H.: Electromagnetically induced transparency and slow light with optomechanics. Nature (London) 472, 69 (2011)

    Article  ADS  Google Scholar 

  12. Fan, F., Fong, K.Y., Poot, M., Tang, H.X.: Cascaded optical transparency in multimode-cavity optomechanical systems. Natt. Commun. 6, 5850 (2015)

    Article  ADS  Google Scholar 

  13. Seok, H., Buchmann, L.F., Wright, E.M.: Meystre.: Multimode strong-coupling quantum optomechanics. Phys. Rev. A. 88, 063850 (2013)

    Article  ADS  Google Scholar 

  14. Massel, F.: Multimode circuit optomechanics near the quantum limit. Mat. Commun. 3, 987 (2012)

    ADS  Google Scholar 

  15. Xu, X.W., Li, Y., Chen, A.X., Liu, Y.X.: Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems. Phys. Rev. A. 93, 023827 (2016)

    Article  ADS  Google Scholar 

  16. Ma, J.L., Ta, L., Li, Q., Gu, H.Q., Liu, W.M.: The efect of oscillator and dipole-dipole interaction on multiple optomechanically induced transparency in cavity optomechanical system scientific reports. Sci. Rep. 8, 14367 (2018)

    Article  ADS  Google Scholar 

  17. Huang, S.J.: Double electromagnetically induced transparency and narrowing of probe absorption in a ring cavity with nanomechanical mirrors. Phys. B. 47, 055504 (2014)

    Article  Google Scholar 

  18. Huang, S., Tsang, M.: Electromagnetically induced transparency and optical memories in an optomechanical system with N membranes. arXiv:1403.1340v1

  19. Shkarin, A.B.: Optically mediated hybridization between two mechanical modes. Phys. Rev. Lett. 112, 013602 (2014)

    Article  ADS  Google Scholar 

  20. Sohail, A., Zhang, Y., Bary, G., Yu, C.S.: Tunable optomechanically induced transparency and fano resonance in optomechanical system with levitated nanosphere. Int. J. Theor. Phys. 57, 2814 (2018)

    Article  MATH  Google Scholar 

  21. Ullah, K, Jing, H., Saif, F.: Multiple electromechanically-induced-transparency windows and Fano resonances in hybrid nano-electro-optomechanic. Phys. Rev. A. 97, 033812 (2018)

    Article  ADS  Google Scholar 

  22. Woolley, M.J., Clerk, A.A.: Canonical form of master equations and characterization of non-Markovianity. Phys. Rev. A. 89, 063805 (2014)

    Article  ADS  Google Scholar 

  23. Hill, J.T., Safavi-Naeini, A.H., Chan, O., Painter, J.: Coherent optical wavelength conversion via cavity optomechanics. Nat. Commun. 3, 1196 (2012)

    Article  ADS  Google Scholar 

  24. Sohail, A., Zhang, Y., Zhang, J., Yu, C.: Optomechanically induced transparency in multi-cavity optomechanical system with and without one two-level atom. Sci. Rep. 6, 28830 (2016)

    Article  ADS  Google Scholar 

  25. Andrews, R.W.: Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321 (2014)

    Article  Google Scholar 

  26. Hou, B.P., Wei, L.F., Wang, S.J.: Optomechanically induced transparency and absorption in hybridized optomechanical systems. Phys. Rev. A 92, 033829 (2015)

    Article  ADS  Google Scholar 

  27. He, Y.: Optomechanically induced transparency associated with steady-state entanglement. Phys. Rev. A 91(1), 013827 (2015)

    Article  ADS  Google Scholar 

  28. Li, X., Nie, W., Chen, A., Lan, Y.: Effect of the mechanical oscillator on the optical-response properties of an optical trimer system. Phys. Rev. A. 98, 053848 (2018)

    Article  ADS  Google Scholar 

  29. Sohail, A., Zhang, Y., Usman, M., Yu, C.S.: Controllable optomechanically induced transparency in coupled optomechanical systems. Eur. Phys. J. D. 71, 103 (2017)

    Article  ADS  Google Scholar 

  30. Yan, M., Rickey, E., Zhu, G.Y.: Nonlinear absorption by quantum interference in cold atoms. Opt. Lett. 26, 548 (2001)

    Article  ADS  Google Scholar 

  31. Harris, S., Yamamoto, Y.E.: Photon switching by quantum interference. Phys. Rev. Lett. 81, 3611 (1998)

    Article  ADS  Google Scholar 

  32. Geng, Q., Zhu, K.D.: Determination of nonlinear nanomechanical resonator-qubit coupling coefficient in a hybrid quantum system applied optics. Appl. Opt. 55, 5358 (2016)

    Article  ADS  Google Scholar 

  33. Yang, Z., Liu, T., Wu, S.X., Yu, C.S.: Optical response mediated by a two-level system in the hybrid optomechanical system. Quantum Inf. Process. 17, 209 (2018)

    Article  ADS  MATH  Google Scholar 

  34. Huo, W.Y., Long, G.L.: Interaction of laser-cooled 87Rb atoms with higher order modes of an optical nanofibre. New J. Phys. 10, 013026 (2008)

    ADS  Google Scholar 

  35. Sete, E.A., Eleuch, H.: Strong squeezing and robust entanglement in cavity electromechanics. Phys. Rev. A. 89, 013841 (2014)

    Article  ADS  Google Scholar 

  36. Jia, W.Z., Wei, L.F., Li, Y., Liu, Y.X.: Phase-dependent optical response properties in an optomechanical system by coherently driving the mechanical resonator. Phys. Rev. A. 91, 043843 (2015)

    Article  ADS  Google Scholar 

  37. Ma, J., You, C., Si, L.G., Xiong, H., Li, J., Yang, X., Wu, Y.: Optomechanically induced transparency in the presence of an external time-harmonic-driving force. Sci. Rep. 5, 11278 (2015)

    Article  ADS  Google Scholar 

  38. Xu, X.W., Li, Y.: Controllable optical output fields from an optomechanical system with mechanical driving. Phys. Rev. A. 92, 023855 (2015)

    Article  ADS  Google Scholar 

  39. Jiang, C., Cui, Y., Bian, X., Zuo, F., Yu, H., Chen, G.: Phase-dependent multiple optomechanically induced absorption in multimode optomechanical systems with mechanical driving. Phys. Rev. A. 94, 023837 (2016)

    Article  ADS  Google Scholar 

  40. Levitan, B.A., Metelmann, A., Clerk, A.A.: Optomechanics with two-phonon driving. New J. Phys. 18, 093014 (2016)

    Article  ADS  Google Scholar 

  41. Si, L.G., Xiong, H., Zubairy, M.S., Wu, Y.: Optomechanically induced opacity and amplification in a quadratically coupled optomechanical system. Phys. Rev. A. 95, 033803 (2017)

    Article  ADS  Google Scholar 

  42. Sohail, A., Rizwan, A., Yu, C.S., Munir, T., Fakhar-e-Alam: Phase-dependent multiple optomechanically induced absorption in multimode optomechanical systems with mechanical driving. Phys. Scr. 95, 045105 (2020)

    Article  ADS  Google Scholar 

  43. Wu, S.C., Qin, L.G., Jing, J., Yan, T.M., Lu, J., Wang, Z.Y.: Microwave-controlled optical double optomechanically induced transparency in a hybrid piezo-optomechanical cavity system. Phys. Rev. A. 98, 013807 (2018)

    Article  ADS  Google Scholar 

  44. Wang, H., Gu, X., Liu, Y.X., Miranowicz, A., Nori, F.: Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system. Phys. Rev. A. 90, 023817 (2014)

    Article  ADS  Google Scholar 

  45. Zhang, X.Y., Zhou, Y.H., Guo, Y.Q.: Double optomechanically induced transparency and absorption in parity-time-symmetric optomechanical systems. Phys. Rev. A. 98, 033832 (2018)

    Article  ADS  Google Scholar 

  46. Wang, Q., Zhang, J.Q., Ma, P.C., Yao, C.M., Feng, M.: Precision measurement of the environmental temperature by tunable double optomechanically induced transparency with a squeezed field. Phys. Rev. A. 91, 063827 (2015)

    Article  ADS  Google Scholar 

  47. Ma, P.C., Zhang, J.Q., Xiao, Y., Feng, M., Zhang, Z.M.: Tunable double optomechanically induced transparency in an optomechanical system. Phys. Rev. A. 90, 043825 (2014)

    Article  ADS  Google Scholar 

  48. Han, X., Zou, C.L., Tang, H.X.: Multimode strong coupling in superconducting cavity piezoelectromechanics. Phys. Rev. Lett. 117, 123603 (2016)

    Article  ADS  Google Scholar 

  49. Cleland, A.N., Geller, M.R.: Superconducting qubit storage and entanglement with nanomechanical resonators. Phys. Rev. Lett. 93, 070501 (2004)

    Article  ADS  Google Scholar 

  50. Zou, C.L., Han, X., Jiang, L., Tang, H.X.: Eliminating the dipole phase in attosecond pulse characterization using Rydberg wave packets. Phys. Rev. A. 94, 013812 (2016)

    Article  ADS  Google Scholar 

  51. Xue, F., Wang, Y.D., Sun, C.P., Okamoto, H., Yamaguchi, H., Semba, K.: Controllable coupling between flux qubit and nanomechanical resonator by magnetic field. New J. Phys. 9, 35 (2007)

    Article  ADS  Google Scholar 

  52. Gaidarzhy, A., Zolfagharkhani, G., Badzey, R.L., Mohanty, P.: Evidence for quantized displacement in macroscopic nanomechanical oscillators. Phys. Rev. Lett. 94, 030402 (2005)

    Article  ADS  Google Scholar 

  53. Xu, X.W., Li, Y.: Controllable optical output fields from an optomechanical system with mechanical driving. Phys. Rev. A. 92, 023855 (2015)

    Article  ADS  Google Scholar 

  54. Yang, Q., Hou, B., Lai, D.G.: Local modulation of double optomechanically induced transparency and amplification. Opt. Express. 25, 9697 (2017)

    Article  ADS  Google Scholar 

  55. Jinag, C., Cui, Y.S., Zhai, Z.Y., Yu, H.L., Li, X.W., Chen, G.B.: Tunable slow and fast light in parity-time-symmetric optomechanical systems with phonon pump. Opt. Exp. 26, 28834 (2018)

    Article  ADS  Google Scholar 

  56. Chad Rigetti, et al: Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms. Phys. Rev. B 86(R), 100506 (2012)

    Article  Google Scholar 

  57. Pirkkalainen, J.M.: Mechanical Resonators Coupled to Superconducting Circuits. Aalto University Publication Series, Finland (2014)

    Google Scholar 

  58. Ofek, N., et al.: Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016)

    Article  ADS  Google Scholar 

  59. Burnett, J.J., et al.: Decoherence benchmarking of superconducting qubits. npj Quantum Inf. 5, 54 (2019)

    Article  Google Scholar 

  60. Kono, S., et al.: Breaking the trade-off between fast control and long lifetime of a superconducting qubit. Nat. Commun. 11, 3683 (2020)

    Article  ADS  Google Scholar 

  61. Zhou, X., Mizel, A.: Nonlinear coupling of nanomechanical resonators to josephson quantum circuits. Phys. Rev. Lett. 97, 267201 (2006)

    Article  ADS  Google Scholar 

  62. Zhao, Y.Y., Jiang, N.Q.: Generating mesoscopic entanglement of coherence and squeezed states in circuit QED system. Phy. Lett. A. 376, 3654 (2012)

    Article  ADS  Google Scholar 

  63. Yang, Z., Sohail, A., Yu, C.S.: Perfect photon absorption in hybrid atom-optomechanical system. EPL. 115, 64002 (2016)

    Article  ADS  Google Scholar 

  64. Sohail, A., Ahmed, R., Yu, C.S., Munir, T.: Enhanced entanglement induced by Coulomb interaction in coupled optomechanical systems. Phys. Scr. 95, 035108 (2020)

    Article  ADS  Google Scholar 

  65. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  66. Liu, Y.C., et al.: Electromagnetically induced transparency in optical microcavities. Nanophotonics 6(5), 789 (2017)

    Article  Google Scholar 

  67. Wang, H, Gu, X., Liu, Y.X., Miranowicz, A, Nori, F.: Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system. Phys. Rev. A 90, 023817 (2014)

    Article  ADS  Google Scholar 

  68. Deotare, P.B.: All optical reconfiguration of optomechanical filters. Nat. Commn. 3, 846 (2012)

    Article  ADS  Google Scholar 

  69. Andrew, M.C., Illing, L., Susan, M., Daniel, J.G.: Experimental verification of designer surface plasmons science. Science. 308, 672 (2005)

    Google Scholar 

  70. Xiong, B., Li, X., Chao, S.L., Zhou, L.: Quantum transistor with a double-cavity optomechanical system. Euro. Phys. Lett. 122, 64002 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Sohail.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: All figures were shuffled in the published version of the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohail, A., Ahmed, R. & Yu, C.s. Switchable and Enhanced Absorption via Qubit-Mechanical Nonlinear Interaction in a Hybrid Optomechanical System. Int J Theor Phys 60, 739–753 (2021). https://doi.org/10.1007/s10773-020-04655-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04655-2

Keywords

Navigation