Skip to main content
Log in

Improving Self-Balancing and Position Tracking Control for Ball Balancer Application with Discrete Wavelet Transform-Based Fuzzy Logic Controller

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The steady-state operation and controlled position tracking in ball balancer applications are largely affected due to their nonlinear and underactuated behavior. To overcome these drawbacks, this paper develops a wavelet-based fuzzy controller which operates in closed loop with the system by measuring the ball position and the plate angle. The proposed approach adapts discrete wavelet transform for denoising the error signal and tuning the weights of the fuzzy controller. To test the effectiveness of the proposed approach, numerical simulations are performed by modeling a two degree of freedom ball balancer system. The eminence of the controller is assessed by comparing its operation on the modeled system with conventional fuzzy logic controller and by calculating the root mean square error, and time response analysis. The results showed a steady and precise response of the proposed approach to the framework of positioning ball on the plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Murray, R.M., Astrom, K.J., Boyd, S.P., Brockett, R.W., Stein, G.: Future directions in control in an information-rich word. IEEE Control Syst Mag. 23, 20–33 (2003). https://doi.org/10.1109/MCS.2003.1188769

    Article  Google Scholar 

  2. Nelles, O.: Nonlinear System Identification. Springer, Berlin Heidelberg, Berlin, Heidelberg (2001)

    Book  Google Scholar 

  3. Boubaker, O.: The inverted pendulum: A fundamental benchmark in control theory and robotics. Int. Conf. Educ. e-Learning Innov. (2012)

  4. Chalupa, P., Přikryl, J., Novák, J.: Modelling of Twin Rotor MIMO System. Proc. 2015 20th Int. Conf. Process Control. PC 2015. 2015-July, 314–319 (2015). https://doi.org/https://doi.org/10.1109/PC.2015.7169982

  5. Nowopolski, K.: Ball-and-beam laboratory system controlled by Simulink model through dedicated microcontrolled-Matlab data exchange protocol. Comput. Appl. Electr. Eng. 11, 310–320 (2013)

    Google Scholar 

  6. Aranda, J., Chaos, D., Dormido-Canto, S., Muñoz, R., Díaz, J.M.: Benchmark control problems for a non-linear underactuated hovercraft: A simulation laboratory for control testing. IFAC Proc. 7, 463–468 (2006). https://doi.org/10.3182/20060621-3-ES-2905.00080

    Article  Google Scholar 

  7. Acosta, J.Á.: Furuta’s pendulum: A conservative nonlinear model for theory and practise. Math. Probl. Eng. 2010, (2010). https://doi.org/https://doi.org/10.1155/2010/742894

  8. Awtar, S., Bernard, C., Boklund, N., Master, A., Ueda, D., Craig, K.: Mechatronic design of a ball-on-plate balancing system. Mechatronics 12, 217–228 (2002). https://doi.org/10.1016/S0957-4158(01)00062-9

    Article  Google Scholar 

  9. Aguilar-Avelar, C., Moreno-Valenzuela, J.: New feedback linearization-based control for arm trajectory tracking of the furuta pendulum. IEEE/ASME Trans Mechatronics. 21, 638–648 (2016). https://doi.org/10.1109/TMECH.2015.2485942

    Article  Google Scholar 

  10. Rudra, S., Barai, R.K., Maitra, M.: Block Backstepping Control of the Underactuated Mechanical Systems. In: Block Backstepping Design of Nonlinear State Feedback Control Law for Underactuated Mechanical Systems. pp. 31–52. Springer Singapore, Singapore (2017)

  11. Moreno-Valenzuela, J., Aguilar-Avelar, C.: Feedback Linearization Control of the Furuta Pendulum. Presented at the (2018)

  12. Spong, M.W.: Partial feedback linearization of underactuated mechanical systems. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’94). pp. 314–321. IEEE

  13. Ortega, R., Spong, M.W., Gomez-Estern, F., Blankenstein, G.: Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Automat. Contr. 47, 1218–1233 (2002). https://doi.org/10.1109/TAC.2002.800770

    Article  MathSciNet  MATH  Google Scholar 

  14. Sun, S., Li, L.: The Study of Ball and Plate System Based on Non-linear PID. Appl. Mech. Mater. Vol. 187 pp 134–137. 187, 134–137 (2012). https://doi.org/https://doi.org/10.4028/www.scientific.net/AMM.187.134

  15. Mochizuki, S., Ichihara, H.: Generalized Kalman-Yakubovich-Popov Lemma Based I-PD Controller Design for Ball and Plate System. J. Appl. Math. 2013, 1–9 (2013). https://doi.org/10.1155/2013/854631

    Article  MathSciNet  MATH  Google Scholar 

  16. Composite Disturbance Rejection Control for Ball Balancer System: Pinagapani, A.K., Mani, G., K R, C., Pandian, K. Procedia Comput. Sci. 133, 124–133 (2018). https://doi.org/10.1016/j.procs.2018.07.016

    Article  Google Scholar 

  17. Ali, H.I., Jassim, H.M., Hasan, A.F.: Optimal Nonlinear Model Reference Controller Design for Ball and Plate System. Arab. J. Sci. Eng. 44, 6757–6768 (2019). https://doi.org/10.1007/s13369-018-3616-1

    Article  Google Scholar 

  18. Bang, H., Lee, Y.S.: Implementation of a ball and plate control system using sliding mode control. IEEE Access. 6, 32401–32408 (2018). https://doi.org/10.1109/ACCESS.2018.2838544

    Article  Google Scholar 

  19. Das, A., Roy, P.: Improved performance of cascaded fractional-order smc over cascaded smc for position control of a ball and plate system. IETE J. Res. 63, 238–247 (2017). https://doi.org/10.1080/03772063.2016.1258336

    Article  Google Scholar 

  20. Kao, S.-T., Ho, M.-T.: Second-Order Sliding Mode Control for Ball-Balancing System. In: 2018 IEEE Conference on Control Technology and Applications (CCTA). pp. 1730–1735. IEEE (2018)

  21. Bang, H., Lee, Y.S.: Embedded model predictive control for enhancing tracking performance of a ball-and-plate system. IEEE Access. 7, 39652–39659 (2019). https://doi.org/10.1109/ACCESS.2019.2907111

    Article  Google Scholar 

  22. Zhang, Z., Yuan, D.: Modelling and control scheme of the ball–plate trajectory-tracking pneumatic system with a touch screen and a rotary cylinder. IET Control Theory Appl. 4, 573–589 (2010). https://doi.org/10.1049/iet-cta.2008.0540

    Article  Google Scholar 

  23. Marco A. Moreno-Armendariz,Cesar A. Perez-Olvera, Floriberto Ortiz Rodrıguez, E.R.: Indirect hierarchical FCMAC control for the ball and plate system. Neurocomputing. 73, 2454–2463 (2010). https://doi.org/https://doi.org/10.1016/j.neucom.2010.03.023

  24. Dong, X., Zhao, Y., Xu, Y., Zhang, Z., Shi, P.: Design of PSO fuzzy neural network control for ball and plate system. Int J Innov Comput Inf Control. 7, 7091–7103 (2011)

    Google Scholar 

  25. Singh, R., Bhushan, B.: Real-time control of ball balancer using neural integrated fuzzy controller. Artif Intell Rev. (2018). https://doi.org/10.1007/s10462-018-9658-7

    Article  Google Scholar 

  26. Shahriari-Kahkeshi, M.: Dead-zone model-based adaptive fuzzy wavelet control for nonlinear systems including input saturation and dynamic uncertainties. Int J Fuzzy Syst. 20, 2577–2592 (2018). https://doi.org/10.1007/s40815-018-0515-2

    Article  MathSciNet  Google Scholar 

  27. Huynh, T.-T., Le, T.-L., Lin, C.-M.: Self-organizing recurrent wavelet fuzzy neural network-based control system design for MIMO uncertain nonlinear systems using TOPSIS method. Int J Fuzzy Syst. 21, 468–487 (2019). https://doi.org/10.1007/s40815-018-0550-z

    Article  Google Scholar 

  28. Tafti, B.E.F., Teshnehlab, M., Khanesar, M.A.: Recurrent interval type-2 fuzzy wavelet neural network with stable learning algorithm: application to model-based predictive control. Int J Fuzzy Syst. 22, 351–367 (2020). https://doi.org/10.1007/s40815-019-00766-z

    Article  MathSciNet  Google Scholar 

  29. Sugiyama, M.: Statistical Reinforcement Learning, Modern Machine Learning Approaches, (2015)

  30. Electronics, M.: Faulhaber DC-Micromotors Series 2338.

  31. Quanser Inc.: Peripherals to Accelerate Control System Design and Implementation. 12 (2010)

  32. Chaumette, F., Hutchinson, S.: Visual servo control. I. Basic approaches. IEEE Robot. & Autom. Mag. 13, 82–90 (2006). https://doi.org/https://doi.org/10.1109/MRA.2006.250573

  33. Quanser educational solutions: 2D Ball Balancer User Manual. , Markham, Ontario. (2013)

  34. Singh, R., Bhushan, B.: Improved ant colony optimization for achieving self-balancing and position control for balancer systems. J. Ambient Intell. Humaniz, Comput (2020)

    Book  Google Scholar 

  35. https://doi.org/https://doi.org/10.1007/s12652-020-02566-y

  36. Pinagapani, A.K., Mani, G., Chandran, K.R., Pandian, K.: Composite disturbance rejection control for ball balancer system. Procedia Comput Sci. 133, 124–133 (2018). https://doi.org/10.1016/j.procs.2018.07.016

    Article  Google Scholar 

  37. Sarkar, T.K., Adve, R., Salazar, M., Garcia, L.: Engineering Perspective, Part 1: Discrete Wavelet Techniques’. IEEE Antennas Propag Mag. 40, 49–70 (1998). https://doi.org/10.1109/74.735965

    Article  Google Scholar 

  38. Yan, R., Gao, R.X.: Tutorial 21 wavelet transform: A mathematical tool for non-stationary signal processing in measurement science part 2 in a series of tutorials in instrumentation and measurement. IEEE Instrum. Meas. Mag. 12, 35–44 (2009). https://doi.org/10.1109/MIM.2009.5270529

    Article  Google Scholar 

  39. Poterasu, V.F.: Wavelets transform for nonlinear control of multibody systems. J. Franklin Inst. 338, 321–334 (2001). https://doi.org/10.1016/S0016-0032(00)00090-9

    Article  MathSciNet  MATH  Google Scholar 

  40. Mallat, S.G.: A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989). https://doi.org/10.1109/34.192463

    Article  MATH  Google Scholar 

  41. Ngui, W.K., Leong, M.S., Hee, L.M., Abdelrhman, A.M.: Wavelet Analysis: Mother Wavelet Selection Methods. Appl Mech Mater. 393, 953–958 (2013). https://doi.org/10.4028/www.scientific.net/AMM.393.953

    Article  Google Scholar 

  42. Sewilam, T.S.A.A.: Automated wavelet-based fault detection and diagnosis for smart distribution systems and microgrids, (2017)

  43. Morsi, W.G., El-Hawary, M.E.: A new perspective for the IEEE standard 1459–2000 via stationary wavelet transform in the presence of nonstationary power quality disturbance. IEEE Trans Power Deliv. 23, 2356–2365 (2008). https://doi.org/10.1109/TPWRD.2008.2002660

    Article  Google Scholar 

  44. Proakis, J.G., Manolakis, D.G.: Design of Hilbert Transformers, (1996)

  45. Vetterli, M., Herley, C.: Wavelets and Filter Banks: Theory and Design. IEEE Trans. Signal Process. 40, 2207–2232 (1992). https://doi.org/10.1109/78.157221

    Article  MATH  Google Scholar 

  46. Debnath, L.: The Wigner-Ville Distribution and Time-Frequency Signal Analysis. In: Wavelet Transforms and Their Applications. pp. 307–360. Birkhäuser Boston, Boston, MA (2002)

  47. You, Y.-L.: Audio Coding: Theory and Applications. (2010)

  48. Parvez, S., Gao, Z.: A wavelet-based multiresolution PID controller. IEEE Trans Ind Appl. 41, 537–543 (2005). https://doi.org/10.1109/TIA.2005.844378

    Article  Google Scholar 

  49. Febin Daya, J.L., Subbiah, V., Iqbal, A., Padmanaban, S.: Novel wavelet-fuzzy ased indirect field oriented control of induction motor drives. J. Power Electron. 13, 656–668 (2013). https://doi.org/10.6113/JPE.2013.13.4.656

    Article  Google Scholar 

  50. Febin Daya, J.L., Subbiah, V., Sanjeevikumar, P.: Robust speed control of an induction motor drive using wavelet-fuzzy based self-tuning multiresolution controller. Int J Comput Intell. Syst. 6, 724–738 (2013). https://doi.org/10.1080/18756891.2013.803741

    Article  Google Scholar 

  51. Ho, M.-T., Rizal, Y., Chu, L.-M.: Visual Servoing Tracking Control of a Ball and Plate System: Design, Implementation and Experimental Validation. Int. J. Adv. Robot. Syst. 1 (2013). https://doi.org/https://doi.org/10.5772/56525

  52. Kassem, A., Haddad, H., Albitar, C.: Commparison Between Different Methods of Control of Ball and Plate System with 6DOF Stewart Platform. IFAC-PapersOnLine. 48, 47–52 (2015). https://doi.org/10.1016/j.ifacol.2015.09.158

    Article  Google Scholar 

  53. Umar, A., Haruna, Z., Musa, U., Mohammed, S.A., Muyideen, M.O.: Graphical User Interface ( GUI ) for Position and Trajectory Tracking Control of the Ball and Plate System Using H-Infinity Controller. 7, 35–56 (2019). https://doi.org/https://doi.org/10.20370/yhas-n460

  54. Maiti, D., Acharya, A., Chakraborty, M., Konar, A., Janarthanan, R.: Tuning PID and PIλDδ Controllers using the Integral Time Absolute Error Criterion. In: 4th IEEE International Conference on Information and Automation for Sustainability, 2008. pp. 1–6 (2008)

  55. Calcev, G.: A Passivity Result for Fuzzy Control Systems. 61, 2727–2728 (1996). https://doi.org/10.1109/CDC.1996.573518

    Article  Google Scholar 

  56. Shin, Y.C., Chengying Xu: Stability Analysis Method. In: Automation and control engineering. pp. 225–235. , United States (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupam Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Bhushan, B. Improving Self-Balancing and Position Tracking Control for Ball Balancer Application with Discrete Wavelet Transform-Based Fuzzy Logic Controller. Int. J. Fuzzy Syst. 23, 27–41 (2021). https://doi.org/10.1007/s40815-020-00994-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00994-8

Keywords

Navigation