Skip to main content

Advertisement

Log in

Serum Exosomal microRNA-27-3p Aggravates Cerebral Injury and Inflammation in Patients with Acute Cerebral Infarction by Targeting PPARγ

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

A Correction to this article was published on 27 July 2022

This article has been updated

Abstract

Acute cerebral infarction (ACI) possesses high mortality. Exosomes present in serum have potential application value in ACI diagnosis. This study investigated the mechanism of serum exosomes in ACI. Serum exosomes isolated from ACI patients and normal people were identified and then injected into the established middle cerebral artery occlusion (MCAO) rat model to evaluate cerebral injury and inflammation. Exosomal microRNA (miR)-27-3p expression was detected and interfered to analyze rat cerebral inflammation. The binding relationship between miR-27-3p and PPARγ was predicted and verified. The lipopolysaccharide (LPS)-treated microglia model was established and intervened with miR-27-3p to detect PPARγ, Iba-1, and inflammation-related factor expressions. After overexpressing PPARγ, rat cerebral inflammation was evaluated. The clinical significance of serum exosomal miR-27-3p in ACI was evaluated. Serum exosomes from ACI patients caused exacerbated MCAO rat cerebral injury and poor behavior recovery, as well as promoted cerebral inflammation. Serum exosomal miR-27-3p deepened rat brain inflammation. miR-27-3p targeted PPARγ to promote microglia activation and inflammation-related factor expressions in MCAO rats, and overexpressing PPARγ attenuated MCAO rat cerebral inflammation. Serum exosomal miR-27-3p promised to be a biomarker for ACI. We proved that serum exosomes from ACI patients aggravated ACI patient cerebral inflammation via the miR-27-3p/PPARγ axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support this study are available from the corresponding author upon reasonable request.

Change history

References

  1. Sun, Z., Q. Xu, G. Gao, M. Zhao, and C. Sun. 2019. Clinical observation in edaravone treatment for acute cerebral infarction. Nigerian Journal of Clinical Practice 22: 1324–1327.

    Article  CAS  PubMed  Google Scholar 

  2. Qu, Y., H. Zhang, H. Li, L. Yu, Y. Sun, and Y. Chen. 2017. Aldehyde dehydrogenase 2 (ALDH2) Glu504Lys polymorphism affects collateral circulation and short-term prognosis of acute cerebral infarction patients. Medical Science Monitor 23: 4559–4566.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liu, R., X. Yu, L. Zhang, H. Zhang, Y. Gong, K. Wu, S. Yan, and L. Song. 2020. Computed tomography (CT) imaging evaluation of integrated traditional Chinese medicine cooperative therapy in treating acute cerebral infarction: a randomized controlled trial. Medicine (Baltimore) 99: e19998.

    Article  Google Scholar 

  4. Wang, Y., H. Jin, W. Wang, F. Wang, and H. Zhao. 2019. Myosin1f-mediated neutrophil migration contributes to acute neuroinflammation and brain injury after stroke in mice. Journal of Neuroinflammation 16: 77.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li, L., S. Ren, X. Hao, Z. Zhen, and H. Ji. 2019. Efficacy of minimally invasive intervention in patients with acute cerebral infarction. Journal of Cardiovascular Pharmacology 73: 22–26.

    Article  CAS  PubMed  Google Scholar 

  6. Yan, Z., T. Yu, Y. Wang, M. Wang, and H. Liang. 2015. Literature review and case report of intravenous thrombolysis in acute cerebral infarction attributed to cervical arterial dissection. Journal of Stroke and Cerebrovascular Diseases 24: e265–e269.

    Article  PubMed  Google Scholar 

  7. Tian, Z., G. Liao, S. Li, Y. Shen, C. Chen, L. Liu, and Y. Li. 2017. Comparison of multimodal intra-arterial treatment versus intravenous thrombolysis for hypertensive patients with severe large vessel cerebral infarction. Journal of Investigative Medicine 65: 1033–1040.

    Article  PubMed  Google Scholar 

  8. Cocozza, F., F. Menay, R. Tsacalian, A. Elisei, P. Sampedro, I. Soria, C. Waldner, M.J. Gravisaco, and C. Mongini. 2019. Cyclophosphamide enhances the release of tumor exosomes that elicit a specific immune response in vivo in a murine T-cell lymphoma. Vaccine 37: 1565–1576.

    Article  CAS  PubMed  Google Scholar 

  9. Lu, X. 2017. The role of exosomes and exosome-derived microRNAs in atherosclerosis. Current Pharmaceutical Design 23: 6182–6193.

    Article  CAS  PubMed  Google Scholar 

  10. Yang, Y., Y. Ye, X. Su, J. He, W. Bai, and X. He. 2017. MSCs-derived exosomes and neuroinflammation, neurogenesis and therapy of traumatic brain injury. Frontiers in Cellular Neuroscience 11: 55.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Iranifar, E., B.M. Seresht, F. Momeni, E. Fadaei, M.H. Mehr, Z. Ebrahimi, M. Rahmati, E. Kharazinejad, and H. Mirzaei. 2019. Exosomes and microRNAs: new potential therapeutic candidates in Alzheimer disease therapy. Journal of Cellular Physiology 234: 2296–2305.

    Article  CAS  PubMed  Google Scholar 

  12. Schulte, C., M. Karakas, and T. Zeller. 2017. microRNAs in cardiovascular disease - clinical application. Clinical Chemistry and Laboratory Medicine 55: 687–704.

    Article  CAS  PubMed  Google Scholar 

  13. Yang, L., F. Niu, H. Yao, K. Liao, X. Chen, Y. Kook, R. Ma, G. Hu, and S. Buch. 2018. Exosomal miR-9 released from HIV tat stimulated astrocytes mediates microglial migration. Journal of Neuroimmune Pharmacology 13: 330–344.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sassoon, D.J., A.G. Goodwill, J.N. Noblet, A.M. Conteh, B.P. Herring, J.N. Mcclintick, J.D. Tune, and K.J. Mather. 2016. Obesity alters molecular and functional cardiac responses to ischemia/reperfusion and glucagon-like peptide-1 receptor agonism. Basic Research in Cardiology 111: 43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Xie, W., L. Li, M. Zhang, H.P. Cheng, D. Gong, Y.C. Lv, F. Yao, P.P. He, X.P. Ouyang, G. Lan, D. Liu, Z.W. Zhao, Y.L. Tan, X.L. Zheng, W.D. Yin, and C.K. Tang. 2016. MicroRNA-27 prevents atherosclerosis by suppressing lipoprotein lipase-induced lipid accumulation and inflammatory response in apolipoprotein E knockout mice. PLoS One 11: e0157085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Momen-Heravi, F., and S. Bala. 2018. Extracellular vesicles in oral squamous carcinoma carry oncogenic miRNA profile and reprogram monocytes via NF-kappaB pathway. Oncotarget 9: 34838–34854.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cui, J., N. Liu, Z. Chang, Y. Gao, M. Bao, Y. Xie, W. Xu, X. Liu, S. Jiang, Y. Liu, R. Shi, W. Xie, X. Jia, J. Shi, C. Ren, K. Gong, C. Zhang, R. Bade, G. Shao, and X. Ji. 2020. Exosomal MicroRNA-126 from RIPC serum is involved in hypoxia tolerance in SH-SY5Y cells by downregulating DNMT3B. Molecular Therapy--Nucleic Acids 20: 649–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, R.L., Z.G. Zhang, L. Zhang, and M. Chopp. 2001. Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience 105: 33–41.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, Z.G., and M. Chopp. 2016. Exosomes in stroke pathogenesis and therapy. The Journal of Clinical Investigation 126: 1190–1197.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mulder, I.A., A. Khmelinskii, O. Dzyubachyk, S. De Jong, N. Rieff, M.J. Wermer, M. Hoehn, B.P. Lelieveldt, and A.M. Van Den Maagdenberg. 2017. Automated ischemic lesion segmentation in MRI mouse brain data after transient middle cerebral artery occlusion. Frontiers in Neuroinformatics 11: 3.

    PubMed  PubMed Central  Google Scholar 

  21. Garcia, J.H., S. Wagner, K.F. Liu, and X.J. Hu. 1995. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26: 627–634 discussion 635.

    Article  CAS  PubMed  Google Scholar 

  22. Huang, L., Y. Liu, J. Lu, B. Cerqueira, V. Misra, and T.Q. Duong. 2017. Intraarterial transplantation of human umbilical cord blood mononuclear cells in hyperacute stroke improves vascular function. Stem Cell Research & Therapy 8: 74.

    Article  CAS  Google Scholar 

  23. Liu, S., C. Hu, Y. Wang, G. Shi, Y. Li, and H. Wu. 2016. miR-124 inhibits proliferation and invasion of human retinoblastoma cells by targeting STAT3. Oncology Reports 36: 2398–2404.

    Article  CAS  PubMed  Google Scholar 

  24. Li, B., K. Concepcion, X. Meng, and L. Zhang. 2017. Brain-immune interactions in perinatal hypoxic-ischemic brain injury. Progress in Neurobiology 159: 50–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gaudet, A.D., L.K. Fonken, L.R. Watkins, R.J. Nelson, and P.G. Popovich. 2018. MicroRNAs: roles in regulating neuroinflammation. Neuroscientist 24: 221–245.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, D., S. He, B. Liu, and C. Liu. 2018. MiR-27-3p regulates TLR2/4-dependent mouse alveolar macrophage activation by targetting PPARgamma. Clinical Science (London, England) 132: 943–958.

    Article  CAS  Google Scholar 

  27. Zhao, Q., X. Wu, S. Yan, X. Xie, Y. Fan, J. Zhang, C. Peng, and Z. You. 2016. The antidepressant-like effects of pioglitazone in a chronic mild stress mouse model are associated with PPARgamma-mediated alteration of microglial activation phenotypes. Journal of Neuroinflammation 13: 259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Nedaeinia, R., M. Manian, M.H. Jazayeri, M. Ranjbar, R. Salehi, M. Sharifi, F. Mohaghegh, M. Goli, S.H. Jahednia, A. Avan, and M. Ghayour-Mobarhan. 2017. Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer. Cancer Gene Therapy 24: 48–56.

    Article  CAS  PubMed  Google Scholar 

  29. Graham, E.M., I. Burd, A.D. Everett, and F.J. Northington. 2016. Blood biomarkers for evaluation of perinatal encephalopathy. Frontiers in Pharmacology 7: 196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Goetzl, L., N. Merabova, N. Darbinian, D. Martirosyan, E. Poletto, K. Fugarolas, and O. Menkiti. 2018. Diagnostic potential of neural exosome cargo as biomarkers for acute brain injury. Annals of Clinical Translational Neurology 5: 4–10.

    Article  CAS  PubMed  Google Scholar 

  31. Ji, Q., Y. Ji, J. Peng, X. Zhou, X. Chen, H. Zhao, T. Xu, L. Chen, and Y. Xu. 2016. Increased brain-specific MiR-9 and MiR-124 in the serum exosomes of acute ischemic stroke patients. PLoS One 11: e0163645.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhou, J., L. Chen, B. Chen, S. Huang, C. Zeng, H. Wu, C. Chen, and F. Long. 2018. Increased serum exosomal miR-134 expression in the acute ischemic stroke patients. BMC Neurology 18: 198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, L., H. Liu, L. Jia, J. Lyu, Y. Sun, H. Yu, H. Li, W. Liu, Y. Weng, and W. Yu. 2019. Exosomes mediate hippocampal and cortical neuronal injury induced by hepatic ischemia-reperfusion injury through activating pyroptosis in rats. Oxidative Medicine and Cellular Longevity 2019: 3753485.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu, J., Y. Xing, Y. Gao, and C. Zhou. 2014. Changes in serum interleukin-33 levels in patients with acute cerebral infarction. Journal of Clinical Neuroscience 21: 298–300.

    Article  CAS  PubMed  Google Scholar 

  35. Tsilioni, I., and T.C. Theoharides. 2018. Extracellular vesicles are increased in the serum of children with autism spectrum disorder, contain mitochondrial DNA, and stimulate human microglia to secrete IL-1beta. Journal of Neuroinflammation 15: 239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Chen, Y., Y. Song, J. Huang, M. Qu, Y. Zhang, J. Geng, Z. Zhang, J. Liu, and G.Y. Yang. 2017. Increased circulating exosomal miRNA-223 is associated with acute ischemic stroke. Frontiers in Neurology 8: 57.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lai, N., D. Wu, T. Liang, P. Pan, G. Yuan, X. Li, H. Li, H. Shen, Z. Wang, and G. Chen. 2020. Systemic exosomal miR-193b-3p delivery attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage in mice. Journal of Neuroinflammation 17: 74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Luceri, C., E. Bigagli, V. Pitozzi, and L. Giovannelli. 2017. A nutrigenomics approach for the study of anti-aging interventions: olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain. European Journal of Nutrition 56: 865–877.

    Article  CAS  PubMed  Google Scholar 

  39. Han, Q.A., C. Yan, L. Wang, G. Li, Y. Xu, and X. Xia. 2016. Urolithin A attenuates ox-LDL-induced endothelial dysfunction partly by modulating microRNA-27 and ERK/PPAR-gamma pathway. Molecular Nutrition & Food Research 60: 1933–1943.

    Article  CAS  Google Scholar 

  40. Cuartero, M.I., I. Ballesteros, A. Moraga, F. Nombela, J. Vivancos, J.A. Hamilton, A.L. Corbi, I. Lizasoain, and M.A. Moro. 2013. N2 neutrophils, novel players in brain inflammation after stroke: modulation by the PPARgamma agonist rosiglitazone. Stroke 44: 3498–3508.

    Article  CAS  PubMed  Google Scholar 

  41. Wei, W., X. Chen, X. Lin, F. Shan, S. Lin, Q. Shen, and L. Zhang. 2018. Serum PPARgamma level and PPARgamma gene polymorphism as well as severity and prognosis of brain injury in patients with arteriosclotic cerebral infarction. Experimental and Therapeutic Medicine 16: 4058–4062.

    PubMed  PubMed Central  Google Scholar 

  42. Zhang, Z., H. Yuan, H. Zhao, B. Qi, F. Li, and L. An. 2017. PPARgamma activation ameliorates postoperative cognitive decline probably through suppressing hippocampal neuroinflammation in aged mice. International Immunopharmacology 43: 53–61.

    Article  CAS  PubMed  Google Scholar 

  43. Zhao, Q., Q. Wang, J. Wang, M. Tang, S. Huang, K. Peng, Y. Han, J. Zhang, G. Liu, Q. Fang, and Z. You. 2019. Maternal immune activation-induced PPARgamma-dependent dysfunction of microglia associated with neurogenic impairment and aberrant postnatal behaviors in offspring. Neurobiology of Disease 125: 1–13.

    Article  PubMed  CAS  Google Scholar 

  44. Hu, X., R.K. Leak, Y. Shi, J. Suenaga, Y. Gao, P. Zheng, and J. Chen. 2015. Microglial and macrophage polarization-new prospects for brain repair. Nature Reviews. Neurology 11: 56–64.

    Article  PubMed  Google Scholar 

  45. Ji, J., T.F. Xue, X.D. Guo, J. Yang, R.B. Guo, J. Wang, J.Y. Huang, X.J. Zhao, and X.L. Sun. 2018. Antagonizing peroxisome proliferator-activated receptor gamma facilitates M1-to-M2 shift of microglia by enhancing autophagy via the LKB1-AMPK signaling pathway. Aging Cell 17: e12774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kumar, A., R.J. Henry, B.A. Stoica, D.J. Loane, G. Abulwerdi, S.A. Bhat, and A.I. Faden. 2019. Neutral sphingomyelinase inhibition alleviates LPS-induced microglia activation and neuroinflammation after experimental traumatic brain injury. The Journal of Pharmacology and Experimental Therapeutics 368: 338–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, B., B. Huang, G. Hu, D. He, Y. Li, X. Ran, J. Du, S. Fu, and D. Liu. 2019. Isovitexin-mediated regulation of microglial polarization in lipopolysaccharide-induced neuroinflammation via activation of the CaMKKbeta/AMPK-PGC-1alpha signaling Axis. Frontiers in Immunology 10: 2650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang, Y., N. Zhu, T. Chen, W. Chen, J. Kong, W. Zheng, and J. Ruan. 2019. Triptolide suppressed the microglia activation to improve spinal cord injury through miR-96/IKKbeta/NF-kappaB pathway. Spine (Phila Pa 1976) 44: E707–E714.

    Article  Google Scholar 

  49. Pan, J., J.L. Jin, H.M. Ge, K.L. Yin, X. Chen, L.J. Han, Y. Chen, L. Qian, X.X. Li, and Y. Xu. 2015. Malibatol A regulates microglia M1/M2 polarization in experimental stroke in a PPARgamma-dependent manner. Journal of Neuroinflammation 12: 51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was supported by Jiaojiang District Science and Technology Project, Taizhou City, Zhejiang Province, China (172044) and the Youth Science and Technology Project of the Affiliated Municipal Hospital of the Medical College of Taizhou University (project no. TZMH-17-13).

Author information

Authors and Affiliations

Authors

Contributions

Zhinan Ye and Jingchun Hu made substantial contributions to the conception of the present study. Hao Xu, Bin Sun, and Yong Jin performed the experiments and wrote the manuscript; Yaping Zhang and Jianli Zhang contributed to the design of the present study and interpreted the data. All authors read and approved the final version of the manuscript for publication.

Corresponding author

Correspondence to Jianli Zhang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethics Approval and Consent to Participate

All animal experiments were approved by the Ethics Committee of The Fifth Affiliated Hospital of Wenzhou Medical University. Significant efforts were made to minimize both the number of animals and their suffering. All procedures were strictly conducted in accordance with the code of ethics.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Z., Hu, J., Xu, H. et al. Serum Exosomal microRNA-27-3p Aggravates Cerebral Injury and Inflammation in Patients with Acute Cerebral Infarction by Targeting PPARγ. Inflammation 44, 1035–1048 (2021). https://doi.org/10.1007/s10753-020-01399-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01399-3

Key Words

Navigation