Skip to main content
Log in

Efficient MgO-doped CaO sorbent pellets for high temperature CO2 capture

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Novel MgO-doped CaO sorbent pellets were prepared by gel-casting and wet impregnation. The effect of Na+ and MgO on the structure and CO2 adsorption performance of CaO sorbent pellets was elucidated. MgO-doped CaO sorbent pellets with the diameter range of 0.5–1.5 mm exhibited an excellent capacity for CO2 adsorption and adsorption rate due to the homogeneous dispersion of MgO in the sorbent pellets and its effects on the physical structure of sorbents. The results show that MgO can effectively inhibit the sintering of CaO and retain the adsorption capacity of sorbents during multiple adsorption-desorption cycles. The presence of mesopores and macropores resulted in appreciable change of volume from CaO (16.7 cm3·mol−1) to CaCO3 (36.9 cm3·mol−1) over repeated operation cycles. Ca2Mg1 sorbent pellets exhibited favorable CO2 capture capacity (9.49 mmol·g−1), average adsorption rate (0.32 mmol·g−1·min−1) and conversion rate of CaO (74.83%) after 30 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kheshgi H, de Coninck H, Kessels J. Carbon dioxide capture and storage: seven years after the IPCC special report. Mitigation and Adaptation Strategies for Global Change, 2012, 17(6): 563–567

    Google Scholar 

  2. Wang J, Huang L, Yang R, Zhang Z, Wu J, Gao Y, Wang Q, O’Hare D, Zhong Z. Recent advances in solid sorbents for CO2 capture and new development trends. Energy & Environmental Science, 2014, 7(11): 3478–3518

    CAS  Google Scholar 

  3. Yan Y, Wang K, Clough P T, Anthony E J. Developments in calcium/chemical looping and metal oxide redox cycles for high-temperature thermochemical energy storage: a review. Fuel Processing Technology, 2020, 199: 106280

    CAS  Google Scholar 

  4. Samanta A, Zhao A, Shimizu G K, Sarkar P, Gupta R, Sarkar P, Gupta R. Post-combustion CO2 capture using solid sorbents: a review. Industrial & Engineering Chemistry Research, 2012, 51(4): 1438–1463

    CAS  Google Scholar 

  5. Kenarsari S D, Yang D, Jiang G, Zhang S, Wang J, Russell A G, Fan M. Review of recent advances in carbon dioxide separation and capture. RSC Advances, 2013, 3(45): 22739–22773

    CAS  Google Scholar 

  6. Wang Q, Luo J, Zhong Z, Borgna A. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy & Environmental Science, 2011, 4(1): 42–55

    CAS  Google Scholar 

  7. Mehrvarz E, Ghoreyshi A A, Jahanshahi M. Surface modification of broom sorghum-based activated carbon via functionalization with triethylenetetramine and urea for CO2 capture enhancement. Frontiers of Chemical Science and Engineering, 2017, 11(2): 252–265

    CAS  Google Scholar 

  8. Nie L, Bai L, Chen J, Jin J, Mi J. Grafting poly(ethyleneimine) on the pore surface of poly(glycidyl methacrylate-trimethylolpropane triacrylate) for preparation of the CO2 sorbent. Energy & Fuels, 2019, 33(12): 12610–12620

    CAS  Google Scholar 

  9. Liu W, Wu Y, Cai T, Chen X, Liu D. Use of nanoparticles Cu/TiO (OH)2 for CO2 removal with K2CO3/KHCO3 based solution: enhanced thermal conductivity and reaction kinetics enhancing the CO2 sorption/desorption performance of K2CO3/KHCO3. Greenhouse Gases. Science and Technology, 2019, 9(1): 10–18

    CAS  Google Scholar 

  10. Yu H, Wang X, Shu Z, Fujii M, Al Song C. 2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures. Frontiers of Chemical Science and Engineering, 2018, 12(1): 83–93

    CAS  Google Scholar 

  11. Xiao Q, Tang X, Liu Y, Zhong Y, Zhu W. Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures. Frontiers of Chemical Science and Engineering, 2013, 7(3): 297–302

    CAS  Google Scholar 

  12. Choi S, Drese J H, Jones C W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. Chem-SusChem, 2009, 2(9): 796–854

    CAS  Google Scholar 

  13. Kierzkowska A M, Pacciani R, Müller C R. CaO-based CO2 sorbents: from fundamentals to the development of new, highly effective materials. ChemSusChem, 2013, 6(7): 1130–1148

    CAS  PubMed  Google Scholar 

  14. Li Y, Sun R, Liu H, Lu C. Cyclic CO2 capture behavior of limestone modified with pyroligneous acid (PA) during calcium looping cycles. Industrial & Engineering Chemistry Research, 2011, 50(17): 10222–10228

    CAS  Google Scholar 

  15. Miranda-Pizarro J, Perejón A, Valverde J M, Pérez-Maqueda L A, Sánchez-Jiménez P E. CO2 capture performance of Ca-Mg acetates at realistic calcium looping conditions. Fuel, 2017, 196(15): 497–507

    CAS  Google Scholar 

  16. Manovic V, Anthony E J, Grasa G, Abanades J C. CO2 looping cycle performance of a high-purity limestone after thermal activation/doping. Energy & Fuels, 2008, 22(5): 3258–3264

    CAS  Google Scholar 

  17. Wu S, Li Q, Kim J N, Yi K B. Properties of a nano CaO/Al2O3 CO2 sorbent. Industrial & Engineering Chemistry Research, 2008, 47(1): 180–184

    CAS  Google Scholar 

  18. Guo H, Wang S, Li C, Zhao Y, Sun Q, Ma X. Incorporation of Zr into calcium oxide for CO2 capture by a simple and facile sol-gel method. Industrial & Engineering Chemistry Research, 2016, 55(29): 7873–7879

    CAS  Google Scholar 

  19. Han R, Gao J, Wei S, Su Y, Qin Y. Development of highly effective CaO@Al2O3 with hierarchical architecture CO2 sorbents via a scalable limited-space chemical vapor deposition technique. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(8): 3462–3470

    CAS  Google Scholar 

  20. Wang K, Gu F, Clough P T, Zhao P, Anthony E J. CO2 capture performance of gluconic acid modified limestone-dolomite mixtures under realistic conditions. Energy & Fuels, 2019, 33(8): 7550–7560

    CAS  Google Scholar 

  21. Wang S, Shen H, Fan S, Zhao Y, Ma X, Gong J. CaO-based meshed hollow spheres for CO2 capture. Chemical Engineering Science, 2015, 135(2): 532–539

    Google Scholar 

  22. Feng J, Guo H, Wang S, Zhao Y, Ma X. Fabrication of multi-shelled hollow Mg-modified CaCO3 microspheres and their improved CO2 adsorption performance. Chemical Engineering Journal, 2017, 321(1): 401–411

    CAS  Google Scholar 

  23. Naeem M A, Armutlulu A, Imtiaz Q, Donat F, Schäublin R, Kierzkowska A, Müller C R. Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity CO2 sorbents. Nature Communications, 2018, 9(1): 1–11

    CAS  Google Scholar 

  24. MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Adjiman C S, Williams C K, Shah N, Fennell P. An overview of CO2 capture technologies. Energy & Environmental Science, 2010, 3(11): 1645–1669

    CAS  Google Scholar 

  25. Diego M E, Arias B, Abanades J C. Investigation of the dynamic evolution of the CO2 carrying capacity of solids with time in La Pereda 1.7 MWth calcium looping pilot plant. International Journal of Greenhouse Gas Control, 2020, 92: 102856

    CAS  Google Scholar 

  26. Mattisson T, Lyngfelt A. A sulphur capture model for circulating fluidized-bed boilers. Chemical Engineering Science, 1998, 53(6): 1163–1173

    CAS  Google Scholar 

  27. Lu D Y, Hughes R W, Anthony E J. Ca-based sorbent looping combustion for CO2 capture in pilot-scale dual fluidized beds. Fuel Processing Technology, 2008, 89(12): 1386–1395

    CAS  Google Scholar 

  28. Su C, Duan L, Anthony E J. CO2 capture and attrition performance of competitive eco-friendly calcium-based pellets in fluidized bed. Greenhouse Gases. Science and Technology, 2018, 8(6): 1124–1133

    CAS  Google Scholar 

  29. Abanades J C, Anthony E J, Lu D Y, Salvador C, Alvarez D. Capture of CO2 from combustion gases in a fluidized bed of CaO. AIChE Journal. American Institute of Chemical Engineers, 2004, 50(7): 1614–1622

    CAS  Google Scholar 

  30. Wang X, Li Y, Shi J, Zhao J, Wang Z, Liu H, Zhou X. Simultaneous SO2/NO removal performance of carbide slag pellets by bagasse templating in a bubbling fluidized bed reactor. Fuel Processing Technology, 2018, 180: 75–86

    CAS  Google Scholar 

  31. Hu Y, Qu M, Li H, Yang Y, Yang J, Qu W, Liu W. Porous extruded-spheronized Li4SiO4 pellets for cyclic CO2 capture. Fuel, 2019, 236(15): 1043–1049

    CAS  Google Scholar 

  32. Wang P, Sun J, Guo Y, Zhao C, Li W, Wang G, Lu P. Structurally improved, urea-templated, K2CO3-based sorbent pellets for CO2 capture. Chemical Engineering Journal, 2019, 374(15): 20–28

    CAS  Google Scholar 

  33. Zhang Z, Pi S, He D, Qin C, Ran J. Investigation of pore-formers to modify extrusion-spheronized CaO-based pellets for CO2 capture. Processes (Basel, Switzerland), 2019, 7(2): 62

    CAS  Google Scholar 

  34. Li H, Qu M, Yang Y, Hu Y, Liu W. One-step synthesis of spherical CaO pellets via novel graphite-casting method for cyclic CO2 capture. Chemical Engineering Journal, 2019, 374(15): 619–625

    CAS  Google Scholar 

  35. Hu Y, Liu W, Peng Y, Yang Y, Sun J, Chen H, Xu M. One-step synthesis of highly efficient CaO-based CO2 sorbent pellets via gelcasting technique. Fuel Processing Technology, 2017, 160(1): 70–77

    CAS  Google Scholar 

  36. Luo C, Zheng Y, Xu Y, Ding N, Shen Q, Zheng C. Wet mixing combustion synthesis of CaO-based sorbents for high temperature cyclic CO2 capture. Chemical Engineering Journal, 2015, 267(1): 111–116

    CAS  Google Scholar 

  37. Armutlulu A, Naeem M A, Liu H, Kim S M, Kierzkowska A, Fedorov A, Müller C R. Multishelled CaO microspheres stabilized by atomic layer deposition of Al2O3 for enhanced CO2 capture performance. Advanced Materials, 2017, 29(41): 1702896

    Google Scholar 

  38. Guo H, Kou X, Zhao Y, Wang S, Ma X. Role of microstructure, electron transfer, and coordination state in the CO2 capture of calcium-based sorbent by doping (Zr-Mn). Chemical Engineering Journal, 2018, 336(15): 376–385

    CAS  Google Scholar 

  39. Hu Y, Lu H, Liu W, Yang Y, Li H. Incorporation of CaO into inert supports for enhanced CO2 capture: A review. Chemical Engineering Journal, 2020, 396(15): 125253

    CAS  Google Scholar 

  40. Li Z, Ouyang J, Luo G, Yao H. High-efficiency CaO-based sorbent modified by aluminate cement and organic fiber through wet mixing method. Industrial & Engineering Chemistry Research, 2019, 58(48): 22040–22047

    CAS  Google Scholar 

  41. Zhao P, Sun J, Li Y, Wang K, Yin Z, Zhou Z, Su Z. Synthesis of efficient CaO sorbents for CO2 capture using a simple organometallic calcium-based carbon template route. Energy & Fuels, 2016, 30(9): 7543–7550

    CAS  Google Scholar 

  42. Liao J, Jin B, Zhao Y, Liang Z. Highly efficient and durable metal-organic framework material derived Ca-based solid sorbents for CO2 capture. Chemical Engineering Journal, 2019, 372(15): 1028–1037

    CAS  Google Scholar 

  43. Lee B B, Ravindra P, Chan E S. Size and shape of calcium alginate beads produced by extrusion dripping. Chemical Engineering & Technology, 2013, 36(10): 1627–1642

    CAS  Google Scholar 

  44. Papageorgiou S K, Katsaros F K, Kouvelos E P, Nolan J W, Le Deit H, Kanellopoulos N K. Heavy metal sorption by calcium alginate beads from Laminaria digitata. Journal of Hazardous Materials, 2006, 137(3): 1765–1772

    CAS  PubMed  Google Scholar 

  45. Manovic V, Anthony E J. Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles. Environmental Science & Technology, 2008, 42(11): 4170–4174

    CAS  Google Scholar 

  46. Gupta H, Fan L. Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Industrial & Engineering Chemistry Research, 2002, 41(16): 4035–4042

    CAS  Google Scholar 

  47. Wu S, Lan P. A kinetic model of nano-CaO reactions with CO2 in a sorption complex catalyst. AIChE Journal. American Institute of Chemical Engineers, 2012, 58(5): 1570–1577

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the National Key Research and Development Program of China (Grant No. 2017YFB0603300), the Program for New Century Excellent Talents in University (Grant No. NCET-13-0411) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Jiang, T., Zhang, H. et al. Efficient MgO-doped CaO sorbent pellets for high temperature CO2 capture. Front. Chem. Sci. Eng. 15, 698–708 (2021). https://doi.org/10.1007/s11705-020-1981-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1981-2

Keywords

Navigation