Skip to main content

Advertisement

Log in

6-pentyl-α-pyrone from Trichoderma koningii induces systemic resistance in tobacco against tobacco mosaic virus

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

This study aimed at evaluating the ability of 6-pentyl-α-pyrone (6PP) isolated from Trichoderma koningii CTX1172 (AUMC 11520), an endophytic fungal strain to induce systemic resistance in tobacco (Nicotiana tabacum cv. White Burley) plant against tobacco mosaic virus (TMV). 6PP exhibited 10–60% symptoms inhibition at low concentrations (10–30 μg mL−1) achieving 100% biocontrol efficacy at high concentrations (40 and 50 μg mL−1), compared with control. Using DAS-ELISA technique for detection of TMV (expressed by decreasing in absorbance value), the TMV detection was significantly reduced in plants treated with 6PP at low concentrations compared with plants inoculated with TMV only and it was almost undetectable in plants treated with high concentrations, as well as healthy control plants. Application of 6PP not only increased the accumulation of proline as a non-enzymatic antioxidant compound, but also increased the activities of pathogenesis-related enzymes (superoxide dismutase, peroxidase and polyphenol oxidase), indicating that 6PP acts as elicitor for induction of resistance in tobacco against TMV. On the molecular level, plants treated with 6PP also showed augmented and rapid expression of defense-related genes including PR-a, PR-b and PR-10. This study was the first to imply the potential of a pyrone compound in biocontrol of plant viral disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

6PP:

6-pentyl-α-pyrone

TMV:

tobacco mosaic virus

HC:

healthy negative control

TIC:

Positive control treated with TMV

TC50:

Healthy negative control treated only with 6PP at 50 μg mL−1

DAS-ELISA:

Double-Antibody Sandwich-Enzyme-Linked Immunosorbent Assay

PR:

Pathogenesis-related

SOD:

Superoxide dismutase

POD:

Peroxidase

PPO:

Polyphenol oxidase

dpi:

Days post-inoculation

SAR:

Systemic acquired resistance

ISR:

Induced systemic resistance

DS:

Disease severity

FW:

Fresh weight

References

  • Ahn, I. P., Park, K. S., & Kim, C. H. (2002). Rhizobacteria-induced resistance perturbs viral disease progress and triggers defense-related gene expression. Molecules and Cells, 13, 302–308.

    CAS  PubMed  Google Scholar 

  • Almagro, L., Gómez Ros, L. V., Belchi-Navarro, S., Bru, R., Ros Barceló, A., & Pedreño, M. A. (2009). Class III peroxidases in plant defence reactions. Journal of Experimental Botany, 60, 377–390.

    CAS  PubMed  Google Scholar 

  • Arjona-Girona, I., Vinale, F., Ruano-Rosa, D., Lorito, M., & López-Herrera, C. J. (2014). Effect of metabolites from different Trichoderma strains on the growth of Rosellinia necatrix, the causal agent of avocado white root rot. European Journal of Plant Pathology, 140, 385–397.

    CAS  Google Scholar 

  • Asselin, A., & Zaitlin, M. (1978). Characterization of a second protein associated with virions of tobacco mosaic virus. Virology, 91, 173–181.

    CAS  PubMed  Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207.

    CAS  Google Scholar 

  • Berger, R. G. (1995). Aroma compounds from microbial de novo synthesis. In R. G. Berger (Ed.), Aroma biotechnology (pp. 51–77). Berlin Heidelberg: Springer.

    Google Scholar 

  • Collins, R. P., & Halim, A. F. (1972). Characterization of the major aroma constituent of the fungus Trichoderma viride. Journal of Agricultural and Food Chemistry, 20, 437–438.

    CAS  Google Scholar 

  • Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2, 53.

    Google Scholar 

  • Dodd, S. L., Hill, R. A., & Stewart, A. (2000). Control of Athelia rolfsii disease on lentil seedlings using 6-pentyl-α-pyrone. Soil Biology and Biochemistry, 32, 1033–1034.

    CAS  Google Scholar 

  • Elavarthi, S., & Martin, B. (2010). Spectrophotometric assays for antioxidant enzymes in plants. In R. Sunkar (Ed.), Plant stress tolerance. Methods in Molecular Biology (pp. 273–281). Berlin: Springer.

  • El-Hasan, A., Walker, F., Schöne, J., & Buchenauer, H. (2007). Antagonistic effect of 6-pentyl-alpha-pyrone produced by Trichoderma harzianum toward Fusarium moniliforme. Journal of Plant Diseases and Protection, 114, 62–68.

    CAS  Google Scholar 

  • Elsharkawy, M. M., Shimizu, M., Takahashi, H., Ozaki, K., & Hyakumachi, M. (2013). Induction of systemic resistance against Cucumber mosaic virus in Arabidopsis thaliana by Trichoderma asperellum SKT-1. The Plant Pathology Journal, 29, 193–200.

    PubMed  PubMed Central  Google Scholar 

  • Gallo, M., Esposito, G., Ferracane, R., Vinale, F., & Naviglio, D. (2013). Beneficial effects of Trichoderma genus microbes on qualitative parameters of Brassica rapa L. subsp. sylvestris L. Janch. Var. esculenta Hort. European Food Research and Technology, 236, 1063–1071.

    CAS  Google Scholar 

  • Garnica-Vergara, A., Barrera-Ortiz, S., Munoz-Parra, E., Raya-González, J., Méndez-Bravo, A., Macías-Rodríguez, L., Ruiz-Herrera, L. F., & López-Bucio, J. (2016). The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytologist, 209, 1496–1512.

    CAS  Google Scholar 

  • Han, Y. Q., Li, P., Gong, S. L., Yang, L., Wen, L. Z., & Hou, M. L. (2016). Defense responses in rice induced by silicon amendment against infestation by the leaf folder Cnaphalocrocis medinalis. PLoS One, 11, e0153918.

    PubMed  PubMed Central  Google Scholar 

  • Hoque, M. A., Banu, M. N., Okuma, E., Amako, K., Nakamura, Y., Shimoishi, Y., & Murata, Y. (2007). Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco bright Yellow-2 suspension-cultured cells. Journal of Plant Physiology, 164, 1457–1468.

    CAS  PubMed  Google Scholar 

  • Hu, Q., Hollunder, J., Niehl, A., Kørner, C. J., Gereige, D., Windels, D., Arnold, A., Kuiper, M., Vazquez, F., Pooggin, M., & Heinlein, M. (2011). Specific impact of tobamovirus infection on the Arabidopsis small RNA profile. PLoS One, 6, e19549.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang, D. J., Roberts, I. M., & Wilson, T. M. A. (1994). Expression of tobacco mosaic virus coat protein and assembly of pseudovirus particles in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 91, 9067–9071.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Islam, M. M., Hoque, M. A., Okuma, E., Banu, M. N., Shimoishi, Y., Nakamura, Y., & Murata, Y. (2009). Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. Journal of Plant Physiology, 166, 1587–1597.

    CAS  PubMed  Google Scholar 

  • Islam, W., Qasim, M., Noman, A., Tayyab, M., Chen, S., & Wang, L. (2018). Management of tobacco mosaic virus through natural metabolites. Records of Natural Products, 12, 403–415.

    CAS  Google Scholar 

  • Ismaiel, A. A., & Ali, D. M. I. (2017). Antimicrobial properties of 6-pentyl-α-pyrone produced by endophytic strains of Trichoderma koningii and its effect on aflatoxin B1 production. Biologia, 72, 1403–1415.

    CAS  Google Scholar 

  • Jwa, N. S., & Hwang, B. K. (2017). Convergent evolution of pathogen effectors toward reactive oxygen species signaling networks in plants. Frontiers in Plant Science, 8, 1687.

    PubMed  PubMed Central  Google Scholar 

  • Li, J.-G., Cao, J., Sun, F.-F., Niu, D.-D., Yan, F., Liu, H.-X., & Guo, J.-H. (2011). Control of Tobacco mosaic virus by PopW as a result of induced resistance in tobacco under greenhouse and field conditions. Phytopathology, 101, 1202–1208.

    CAS  PubMed  Google Scholar 

  • Liu, J. J., & Ekramoddoullah, A. K. M. (2006). The family 10 of plant pathogenesis-related proteins: Their structure, regulation, and function in response to biotic and abiotic stresses. Physiological and Molecular Plant Pathology, 68, 3–13.

    CAS  Google Scholar 

  • Lowery, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    Google Scholar 

  • Luo, Y., Zhang, D.-D., Dong, X.-W., Zhao, P.-B., Chen, L.-L., Song, X.-Y., Wang, X.-J., Chen, X.-L., Shi, M., & Zhang, Y.-Z. (2010). Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Microbiology Letters, 313, 120–126.

    CAS  PubMed  Google Scholar 

  • Musidlak, O., Nawrot, R., & Goździcka-Józefiak, A. (2017). Which plant proteins are involved in antiviral defense? Review on in vivo and in vitro activities of selected plant proteins against viruses. International Journal of Molecular Sciences, 18, 2300.

    PubMed Central  Google Scholar 

  • Nasr-Eldin, M., Messiha, N., Othman, B., Megahed, A., & Elhalag, K. (2019). Induction of potato systemic resistance against the Potato virus Y (PVYNTN), using crude filtrates of Streptomyces spp. under greenhouse conditions. Egyptian Journal of Biological Pest Control, 29, 1–11.

    Google Scholar 

  • Pascale, A., Vinale, F., Manganiello, G., Nigro, M., Lanzuise, S., Ruocco, M., Marra, R., Lombardi, N., Woo, S. L., & Lorito, M. (2017). Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Protection, 92, 176–181.

    CAS  Google Scholar 

  • Raj, S. N., Sarosh, B. R., & Shetty, H. S. (2006). Induction and accumulation of polyphenol oxidase activities as implicated in development of resistance against pearl millet downy mildew disease. Functional Plant Biology, 33, 563–571.

    CAS  PubMed  Google Scholar 

  • Romera, F. J., García, M. J., Lucena, C., Martínez-Medina, A., Aparicio, M. A., Ramos, J., Alcántara, E., Angulo, M., & Pérez-Vicente, R. (2019). Induced systemic resistance (ISR) and Fe deficiency responses in dicot plants. Frontiers in Plant Science, 10, 287.

    PubMed  PubMed Central  Google Scholar 

  • Sakharov, I. Y., & Ardila, G. B. (1999). Variations of peroxidase activity in cocoa (Theobroma cacao L.) beans during their ripening, fermentation and drying. Food Chemistry, 65, 51–54.

    CAS  Google Scholar 

  • SAS (2004) SAS/STAT® 9.1. User's Guide. SAS Institute Inc., New York, NY.

  • Serrano-Carreon, L., Hathout, Y., Bensoussan, M., & Belin, J. M. (1993). Metabolism of linoleic acid or mevalonate and 6-pentyl-α-pyrone biosynthesis by Trichoderma species. Applied and Environmental Microbiology, 59, 2945–2950.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sivasithamparam, K., & Ghisalberti, E. L. (1998). Secondary metabolism in Trichoderma and Gliocladium. In C. P. Kubicek & G. E. Harman (Eds.), Trichoderma and Gliocladium (pp. 139–191). London: Taylor and Francis.

    Google Scholar 

  • Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15, 89–97.

    CAS  PubMed  Google Scholar 

  • Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40, 1–10.

    CAS  Google Scholar 

  • Vitti, A., Pellegrini, E., Nali, C., Lovelli, S., Sofo, A., Valerio, M., Scopa, A., & Nuzzaci, M. (2016). Trichoderma harzianum T-22 induces systemic resistance in tomato infected by Cucumber mosaic virus. Frontiers in Plant Science, 7, 1520.

    PubMed  PubMed Central  Google Scholar 

  • Waliszewski, K. N., Márquez, O., & Pardio, V. T. (2009). Quantification and characterization of polyphenol oxidase from vanilla bean. Food Chemistry, 117, 196–203.

    CAS  Google Scholar 

  • Wang, N., Liu, M., Guo, L., Yang, X., & Qiu, D. (2016). A novel protein elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 induces systemic resistance in tobacco. International Journal of Biological Sciences, 12, 757–767.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woo, S. L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Lanzuise, S., Manganiello, G., & Lorito, M. (2014). Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal, 8, 71–126.

    Google Scholar 

  • Worasatit, N., Sivasithamparam, K., Ghisalberti, E. L., & Rowland, C. (1994). Variation in pyrone production, lytic enzymes and control of Rhizoctonia root rot of wheat among single-spore isolates of Trichoderma koningii. Mycological Research, 98, 1357–1363.

    CAS  Google Scholar 

  • Wu, W.-Q., Fan, H.-Y., Jiang, N., Wang, Y., Zhang, Z.-Y., Zhang, Y.-L., & Wang, X.-B. (2014). Infection of Beet necrotic yellow vein virus with RNA4-encoded P31 specifically up-regulates pathogenesis-related protein 10 in Nicotiana benthamiana. Virology Journal, 11, 118–130.

    PubMed  PubMed Central  Google Scholar 

  • Wu, Q., Sun, R., Ni, M., Yu, J., Li, Y., Yu, C., Dou, K., Ren, J., & Chen, J. (2017). Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. PLoS One, 12, e0179957.

    PubMed  PubMed Central  Google Scholar 

  • Yuan, J. S., Reed, A., Chen, F., & Stewart Jr., C. N. (2006). Statistical analysis of real-time PCR data. BMC Bioinformatics, 7, 85.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Mostafa M.S. Ismaiel, Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt for critical comments concerning the expression analysis of PR-genes by RT-PCR. We also acknowledge Dr. Reda E. Hamouda, Department of Animal Production Systems Research, Animal Production Research Institute, Agricultural Research Center, Ministry of Agriculture, Dokki, Giza, Egypt for analyzing the data statistically.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Ismaiel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This study did not involve human participants and/or animals.

Informed consent

All authors consent to this submission.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, M.A., Ismaiel, A.A. & Ahmed, R.M. 6-pentyl-α-pyrone from Trichoderma koningii induces systemic resistance in tobacco against tobacco mosaic virus. Eur J Plant Pathol 159, 81–93 (2021). https://doi.org/10.1007/s10658-020-02142-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-02142-2

Keywords

Navigation