Skip to main content
Log in

Construction of a high-resolution linkage map and chromosomal localization of the loci determining major qualitative traits in onion (Allium cepa L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

A yellow inbred line (SP3B) and a red doubled haploid line (H6) were used to produce a F2 mapping population of onion (Allium cepa L.). Initially, insertion/deletion and cleaved amplified polymorphic sequence markers were developed based on polymorphisms in the reference transcriptome. To improve efficiency of marker development, RNA-seq was carried out to identify single nucleotide polymorphisms (SNPs) between parental lines. High-quality SNPs were selected via customized screening process, and 344 high resolution melting (HRM) markers were developed. In addition, 161 HRM markers were developed based on the SNPs detected using genotyping-by-sequencing. A linkage map consisting of 652 molecular markers distributed in eight linkage groups was constructed. The total length of the linkage map was 749.8 cM, and the average interval between markers was 1.91 cM, the highest resolution among onion linkage maps reported so far. All eight linkage groups were assigned to onion chromosomes by identifying the common homologous loci in other linkage maps. Four major loci (C, I, R, and L) determining onion bulb colors were located on separate chromosomes. Analysis of ‘Santero’, a F1 cultivar resistant to downy mildew, revealed that the length of the chromosome fragment introgressed from Allium roylei, harboring the resistance gene estimated at 27.6 cM at the end of chromosome 3. The high-resolution linkage map constructed in this study and chromosomal locations of major qualitative loci will be used to design an effective selection strategy for onion breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albini S, Jones G (1988) Synaptonemal complex spreading in Allium cepa and Allium fistulosum. II. Pachytene observations: the SC karyotype and the correspondence of late recombination nodules and chiasmata. Genome 30:399–410

    Article  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Baek G, Kim C, Kim S (2017) Development of a molecular marker tightly linked to the C locus conferring a white bulb color in onion (Allium cepa L.) using bulked segregant analysis and RNA-seq. Mol Breed 37:94

    Article  Google Scholar 

  • Baldwin S, Revanna R, Thomson S, Pither-Joyce M, Wright K, Crowhurst R, Fiers M, Chen L, Macknight R, McCallum JA (2012) A Toolkit for bulk PCR-based marker design from next-generation sequence data: application for development of a framework linkage map in bulb onion (Allium cepa L.). BMC Genom 13:637

    Article  CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewster JL (2008) Onions and other vegetable Alliums. CAB International, Wallingford

    Book  Google Scholar 

  • Choi Y, Kim S, Lee J (2020) Construction of an onion (Allium cepa L.) genetic linkage map using genotyping-by-sequencing analysis with a reference gene set and identification of QTLs controlling anthocyanin synthesis and content. Plants 9:616

    Article  CAS  PubMed Central  Google Scholar 

  • Clarke AE, Jones HA, Little TM (1944) Inheritance of bulb color in the onion. Genetics 29:569–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries JN (1990) Onion chromosome nomenclature and homoeology relationship—workshop report. Euphytica 49:1–3

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Duangjit J, Bohanec B, Chan AP, Town CD, Havey MJ (2013) Transcriptome sequencing to produce SNP-based genetic maps of onion. Theor Appl Genet 126:2093–2101

    Article  CAS  PubMed  Google Scholar 

  • Duangjit J, Welsh K, Wise ML, Bohanec B, Havey MJ (2014) Genetic analyses of anthocyanin concentrations and intensity of red bulb color among segregating haploid progenies of onion. Mol Breed 34:75–85

    Article  CAS  Google Scholar 

  • El-Shafie MW, Davis GN (1967) Inheritance of bulb color in the onion (Allium cepa L.). Hilgardia 38:607–622

    Article  Google Scholar 

  • Herzog E, Frisch M (2011) Selection strategies for marker-assisted backcrossing with high-throughput marker systems. Theor Appl Genet 123:251–260

    Article  PubMed  Google Scholar 

  • Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J, Bowman M, Iovene M, Sanseverino W, Cavagnaro P, Yildiz M, Macko-Podgórni A, Moranska E, Grzebelus E, Grzebelus D, Ashrafi H, Zheng Z, Cheng S, Spooner D, van Deynze A, Simon P (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48:657–666

    Article  CAS  PubMed  Google Scholar 

  • Jakše J, Martin W, McCallum J, Havey MJ (2005) Single nucleotide polymorphisms, indels, and simple sequence repeats for onion cultivar identification. J Am Soc Hort Sci 130:912–917

    Article  Google Scholar 

  • Jo C, Kim S (2020) Transposition of a non-autonomous DNA transposon in the gene coding for a bHLH transcription factor results in a white bulb color of onions (Allium cepa L.). Theor Appl Genet 133:317–328

    Article  CAS  PubMed  Google Scholar 

  • Jo J, Purushotham PM, Han K, Lee H, Nah G, Kang B (2017) Development of a genetic map for onion (Allium cepa L.) using reference-free genotyping-by-sequencing and SNP assays. Front Plant Sci 8:1606

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim B, Kim S (2019) Identification of a variant of CMS-T cytoplasm and development of high resolution melting markers for distinguishing cytoplasm types and genotyping a restorer-of-fertility locus in onion (Allium cepa L.). Euphytica 215:164

    Article  Google Scholar 

  • Kim S, Jones R, Yoo K, Pike LM (2004) Gold color in onions (Allium cepa): a natural mutation of the chalcone isomerase gene resulting in a premature stop codon. Mol Gen Genomics 272:411–419

    Article  CAS  Google Scholar 

  • Kim S, Jones R, Yoo K, Pike LM (2005a) The L locus, one of complementary genes required for anthocyanin production in onions (Allium cepa), encodes anthocyanidin synthase. Theor Appl Genet 111:120–127

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Yoo K, Pike LM (2005b) Development of a PCR-based marker utilizing a deletion mutation in the DFR (dihydroflavonol 4-reductase) gene responsible for the lack of anthocyanin production in yellow onions (Allium cepa). Theor Appl Genet 110:588–595

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Yoo K, Pike LM (2007) Production of doubled haploid onions (Allium cepa) and evaluation of their field performance. Hort Environ Biotechnol 48:143–147

    Google Scholar 

  • Kim S, Kim C, Park M, Choi D (2015a) Identification of candidate genes associated with fertility restoration of cytoplasmic male-sterility in onion (Allium cepa L.) using a combination of bulked segregant analysis and RNA-seq. Theor Appl Genet 128:2289–2299

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kim M, Kim Y, Yeom S, Cheong K, Kim K, Jeon J, Kim S, Kim D, Sohn S, Lee Y, Choi D (2015b) Integrative structural annotation of de novo RNA-Seq provides an accurate reference gene set of the enormous genome of the onion (Allium cepa L.). DNA Res 22:19–27

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Park JY, Yang T (2015c) Characterization of three active transposable elements recently inserted in three independent DFR-A alleles and one high-copy DNA transposon isolated from the Pink allele of the ANS gene in onion (Allium cepa L.). Mol Genet Genomics 290:1027–1037

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Kim C, Kim S (2016a) Identification of two novel mutant ANS alleles responsible for inactivation of anthocyanidin synthase and failure of anthocyanin production in onion (Allium cepa L.). Euphytica 212:427–437

    Article  CAS  Google Scholar 

  • Kim S, Kim C, Choi M, Kim S (2016b) Development of a simple PCR marker tagging the Allium roylei fragment harboring resistance to downy mildew (Peronospora destructor) in onion (Allium cepa L.). Euphytica 208:561–569

    Article  CAS  Google Scholar 

  • King JJ, Bradeen JM, Bark O, McCallum JA, Havey MJ (1998) A low-density genetic map of onion reveals a role for tandem duplication in the evolution of an extremely large diploid genome. Theor Appl Genet 96:52–62

    Article  CAS  Google Scholar 

  • Kofoet A, Kik C, Wietsma WA, de Vries JN (1990) Inheritance of resistance to downy mildew (Peronospora destructor [Berk.] Casp.) from Allium roylei Stearn in the backcross Allium cepa L. × (A. roylei × A.cepa). Plant Breed 105:144–149

    Article  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, and 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin WJ, McCallum J, Shigyo M, Jakse J, Kuhl JC, Yamane N, Pither-Joyce M, Gokce AF, Sink KC, Town CD, Havey MJ (2005) Genetic mapping of expressed sequences in onion and in silico comparisons with rice show scant colinearity. Mol Gen Genomics 274:197–204

    Article  CAS  Google Scholar 

  • Masuzaki S, Shigyo M, Yamauchi N (2006a) Complete assignment of structural genes involved in flavonoid biosynthesis influencing bulb color to individual chromosomes of the shallot (Allium Cepa L.). Genes Genet Syst 81:255–263

    Article  CAS  PubMed  Google Scholar 

  • Masuzaki S, Shigyo M, Yamauchi N (2006b) Direct comparison between genomic constitution and flavonoid contents in Allium multiple alien addition lines reveals chromosomal locations of genes related to biosynthesis from dihydrokaempferol to quercetin glucosides in scaly leaf of shallot (Allium cepa L.). Theor Appl Genet 112:607–617

    Article  CAS  PubMed  Google Scholar 

  • McCallum J, Leite D, Pither-Joyce M, Havey MJ (2001) Expressed sequence markers for genetic analysis of bulb onion (Allium cepa L.). Theor Appl Genet 103:979–991

    Article  CAS  Google Scholar 

  • McCallum J, Clarke A, Pither-Joyce M, Shaw M, Butler R, Brash D, Scheffer J, Sims I, van Heusden S, Shigyo M, Havey MJ (2006a) Genetic mapping of a major gene affecting onion bulb fructan content. Theor Appl Genet 112:958–967

    Article  CAS  PubMed  Google Scholar 

  • McCallum J, Pither-Joyce M, Shaw M, Kenel F, Davis S, Butler R, Scheffer J, Jakse J, Havey MJ (2006b) Genetic mapping of sulfur assimilation genes reveals a QTL for onion bulb pungency. Theor Appl Genet 114:815–822

    Article  PubMed  Google Scholar 

  • McCallum J, Thomson S, Pither-Joyce M, Kenel F, Clarke A, Havey MJ (2008) Genetic diversity analysis and single-nucleotide polymorphism marker development in cultivated bulb onion based on expressed sequence tag–simple sequence repeat markers. J Am Soc Hort Sci 133:810–818

    Article  Google Scholar 

  • McCallum J, Baldwin S, Shigyo M, Deng Y, van Heusden S, Pither-Joyce M, Kenel F (2012) AlliumMap-A comparative genomics resource for cultivated Allium vegetables. BMC Genom 13:168

    Article  CAS  Google Scholar 

  • Mutz K, Heilkenbrinker A, Lönne M, Walter J, Stahl F (2013) Transcriptome analysis using next-generation sequencing. Curr Opin Biotechnol 24:22–30

    Article  CAS  PubMed  Google Scholar 

  • Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative Genomics Viewer. Nat Biotechnol 29:24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneeberger K, Weigel D (2011) Fast-forward genetics enabled by new sequencing technologies. Trends Plant Sci 16:282–288

    Article  CAS  PubMed  Google Scholar 

  • Scholten OE, van Heusden AW, Khrustaleva LI, Burger-Meijer K, Mank RA, Antonise RGC, Harrewijn JL, Van Haecke W, Oost EH, Peters RJ, Kik C (2007) The long and winding road leading to the successful introgression of downy mildew resistance into onion. Euhytica 156:345–353

    Article  Google Scholar 

  • Scholten OE, van Kaauwen MPW, Shahin A, Hendrickx PM, Keizer LCP, Burger K, van Heusden AW, van der Linden CG, Vosman B (2016) SNP-markers in Allium species to facilitate introgression breeding in onion. BMC Plant Biol 16:187

    Article  PubMed  PubMed Central  Google Scholar 

  • Seo I, Kim J, Moon J, Kim S (2020) Construction of a linkage map flanking the I locus controlling dominant white bulb color and analysis of differentially expressed genes between dominant white and red bulbs in onion (Allium cepa L.). Euphytica 216:97

    Article  CAS  Google Scholar 

  • Shigyo M, Tashiro Y, Isshiki S, Miyazaki S (1996) Establishment of a series of alien monosomic addition lines of Japanese bunching onion (Allium fistulosum L.) with extra chromosomes from shallot (A. cepa L. Aggregatum group). Genes Genet Syst 71:363–371

    Article  CAS  PubMed  Google Scholar 

  • Shigyo M, Tashiro Y, Iino M, Terahara N, Ishimaru K, Isshiki S (1997) Chromosomal locations of genes related to flavonoid and anthocyanin production in leaf sheath of shallot (Allium cepa L. Aggregatum group). Genes Genet Syst 72:149–152

    Article  CAS  Google Scholar 

  • Simko I (2016) High-resolution DNA melting analysis in plant research. Trends Plant Sci 21:528–537

    Article  CAS  PubMed  Google Scholar 

  • Sohn S, Ahn Y, Lee T, Lee J, Jeong M, Seo C, Chandra R, Kwon Y, Kim C, Kim D, Won S, Kim JS, Choi D (2016) Construction of a draft reference transcripts of onion (Allium cepa L.) using long-read sequencing. Plant Biotechnol Rep 10:383–390

    Article  Google Scholar 

  • Song S, Kim C, Moon JS, Kim S (2014) At least nine independent natural mutations of the DFR-A gene are responsible for appearance of yellow onions (Allium cepa L.) from red progenitors. Mol Breed 33:173–186

    Article  CAS  Google Scholar 

  • Tsukazaki H, Yamashita K, Yaguchi S, Yamashita K, Hagihara T, Shigyo M, Kojima A, Wako T (2011) Direct determination of the chromosomal location of bunching onion and bulb onion markers using bunching onion–shallot monosomic additions and allotriploid-bunching onion single alien deletions. Theor Appl Genet 122:501–510

    Article  PubMed  Google Scholar 

  • van der Meer QP, de Vries JN (1990) An interspecific cross between Allium roylei Stearn and Allium cepa L., and its backcross to A. cepa. Euphytica 47:29–31

    Article  Google Scholar 

  • van Heusden AW, Shigyo M, Tashiro Y, Vrielink-van Ginkel R, Kik C (2000a) AFLP linkage group assignment to the chromosomes of Allium cepa L. via monosomic addition lines. Theor Appl Genet 100:480–486

    Article  Google Scholar 

  • van Heusden AW, van Ooijen JW, Vrielink-van Ginkel R, Verbeek WHJ, Wietsma WA, Kik C (2000b) A genetic map of an interspecific cross in Allium based on amplified fragment length polymorphism (AFLP™) markers. Theor Appl Genet 100:118–126

    Article  Google Scholar 

  • van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0, Software for the calculation of genetic linkage maps. Plant Res Int, Wageningen, Netherlands

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wolf JBW (2013) Principles of transcriptome analysis and gene expression quantification: an RNA-seq tutorial. Mol Ecol Resour 13:559–572

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through the Agriculture, Food and Rural Affairs Research Center Support Program (Vegetable Breeding Research Center), and funded by the Ministry of Agriculture, Food and Rural Affairs (710011-03) and Golden Seed Project (Center for Horticultural Seed Development, No 213007-05-4-SBB10). The authors thank Ji-wha Hur, Jeong-Ahn Yoo, and Su-jung Kim for their dedicated technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunggil Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig.

 1. Development of an HRM marker based on the SNP between red and yellow DFR-A alleles. A. Organization of red and yellow DFR-A alleles and a homologous pseudogene, DFR-B. Arrow-shaped boxes indicate genic regions and 5’-to-3’ directions. Exons and introns are denoted by filled and empty boxes, respectively. The location of triplet codons displaying normal and premature stop codons is shown above the exon 3. The SNP used to develop an HRM marker is shown on the vertical lines in the 5’ upstream regions. Horizontal arrows indicate primer-binding positions. Similar colors of rectangular boxes indicate homologous sequences. B. Normalized melting peaks (upper) and curves (bottom) of the HRM marker. (TIFF 274 kb)

Supplementary Fig.

 2. Development of an HRM marker based on the SNP between two active ANS alleles. A. Organization of two ANS alleles segregating in the mapping population. Arrow-shaped boxes indicate genic regions and 5’-to-3’ directions. Exons and intron are denoted by filled and empty boxes, respectively. The SNP used to develop an HRM marker is shown on the vertical lines at the 5’ upstream regions. Horizontal arrows indicate primer-binding positions. B. Normalized melting peaks (upper) and curves (bottom) of the HRM marker. (TIFF 269 kb)

Supplementary material 3 (XLSX 124 kb)

Supplementary material 4 (XLSX 418 kb)

Supplementary material 5 (XLSX 11 kb)

Supplementary material 6 (DOCX 14 kb)

Supplementary material 7 (DOCX 14 kb)

Supplementary material 8 (DOCX 14 kb)

Supplementary material 9 (XLSX 632 kb)

Supplementary material 10 (DOCX 14 kb)

Supplementary material 11 (XLSX 11 kb)

Supplementary material 12 (XLSX 269 kb)

Supplementary material 13 (XLSX 15 kb)

Supplementary material 14 (XLSX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, Y., Kim, B., Lee, J. et al. Construction of a high-resolution linkage map and chromosomal localization of the loci determining major qualitative traits in onion (Allium cepa L.). Euphytica 217, 17 (2021). https://doi.org/10.1007/s10681-020-02746-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-020-02746-z

Keywords

Navigation