Skip to main content

Advertisement

Log in

EFA-CFA integrated approach for groundwater resources sustainability in agricultural areas under data scarcity challenge: case study of the Souassi aquifer, Central-eastern Tunisia

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Water resources become more and more threatened by the increasing request related to the population growth, especially in agricultural regions. This article focused on the design of a geo-model monitoring network controlling groundwater quality in the fast-growing agricultural area of Souassi, Central eastern Tunisia. The studied area is known for its dry climate conditions and information scarcity while they are most needed. In this case, the integrated approach based on the Exploratory Factor Analysis coupled to the Confirmatory Factors Analysis and geostatistics were performed in order to detect the most relevant factors intervening in the groundwater quality and their spatial variability in the shallow aquifer of Souassi. This investigation is based on data set of nine parameters (EC, Ca, Mg, Na, K, HCO3, SO4, Cl and NO3) determined in 30 samples from wells tapping the shallow aquifer of Souassi. The PCA results allowed illustrating that the groundwater quality in Souassi shallow aquifer is affected by both natural and anthropogenic factors. Developing the SEM led to identifying the most meaningful factors controlling the water mineralization. The geospatial interpolation using kriging technique enabled us to locate areas with high salinity values corresponding to the natural discharge zone of the aquifer as well as areas with high rate of nitrate coinciding essentially with olive fields in the central zone. Under limited database, the results allow highlighting the risk zones in the aquifer. This could assist in establishing sustainable agricultural activities while helping to solve environmental degradation of water resources in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Fig. 2
Fig. 3

Source in Souassi shallow water (Gibbs 1970) (Microsoft Excel)

Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmadi, S. H., & Sedghamiz, A. (2007). Application and evaluation of kriging and cokriging methods on groundwater depth mapping. Environmental Monitoring and Assessment, 138(1–3), 357–368. https://doi.org/10.1007/s10661-007-9803-2.

    Article  Google Scholar 

  • Anderson, J., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411–423.

    Google Scholar 

  • Anderson, J. C., & Gerbing, D. W. (1992). Assumptions and comparative strengths of the two-step approach: Comment on Fornell and Yi. Sociological Methods Research, 20, 321–333.

    Google Scholar 

  • Anguma, J. (2001). Effects of sample size on the distribution of selected fit indices: A graphical approach. Educational and Psychological Measurement, 61(5), 759–776.

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2004). Geochemistry groundwater and pollution (2nd ed.). Netherlands: Balkerma.

    Google Scholar 

  • Astrachan, C. B., Patel, V. K., & Wanzenried, G. (2014). A comparative study of CB-SEM and PLS-SEM for theory development in family firm research. Journal of Family Business Strategy, 5(1), 116–128.

    Google Scholar 

  • Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture. FAO Irrigation and Drainage Paper No. 29. Rev. 1.U. N. Rome: Food and Agriculture Organization.

  • Belkhiri, L., & Narany, T. S. (2015). Using multivariate statistical analysis. geostatistical techniques and structural equation modeling to identify spatial variability of groundwater quality. Water Resource Management, 29, 2073–2089.

    Google Scholar 

  • Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246.

    CAS  Google Scholar 

  • Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88, 588–606.

    Google Scholar 

  • Bollen, K. A., & Stine, R. A. (1992). Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods & Research, 21(2), 205–229.

    Google Scholar 

  • Brown, J.D. (2009). Choosing the right type of rotation in PCA and EFA. Shiken: JALT Testing and Evaluation Newsletter. 13(3) 20–25 Retrieved from http://jalt.org/test/bro_31.htm

  • Bryant, F. B., & Yarnold, P. R. (1995). Principal-components analysis and exploratory and confirmatory factor analysis. In L. G. Grimm & P. R. Yarnold (Eds.), Reading and understanding multivariate statistics. Washington: American Psychological Association.

    Google Scholar 

  • Byrne, B. M. (2013). Structural equation modeling with Mplus: Basic concepts, applications, and programming.

  • Cambardella, C., Moorman, T., Novak, J., Parkin, T., Karlen, D., & Turco, R. (1994). Field scale variability of soil properties in Central Iowa soils. Soil Science Society of America, 58(5), 1501–1511.

    Google Scholar 

  • Cloutier, V., Lefebvre, R., Therrien, R., & Savard, M. M. (2008). Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Jour Hydrology, 353, 294–313.

    CAS  Google Scholar 

  • DGRE. (2005). Internal report-General District of Water Ressources (Tunisia).

  • Dillon, W. R., Kumar, A., & Mulani, N. (1987). Offending estimates in covariance structure analysis: Comments on the causes of and solutions to Heywood cases. Psychological Bulletin, 101(1), 126–135.

    Google Scholar 

  • Efron, B. (1979). Bootstrap methods: Another look at the Jackknife. The Annals of Statistics, 7, 1–26.

    Google Scholar 

  • El Akremi, A. (2005). Analyse des effetslinéaires non linéairesetd’interaction par les méthodesd’équationsstructurelles sous Lisrel. In P. Rousseland & F. Wacheux (Eds.), Management des ressources humaines: Méthodes de recherche en Sciences Sociales. Paris: De Boeck.

    Google Scholar 

  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research., 18, 39–50.

    Google Scholar 

  • Frost, D. R. (2013). Amphibian species of the world: An online reference. Version 5.6 (9 January 2013). New York: American Museum of Natural History.

    Google Scholar 

  • Gerbing, D. W., & Anderson, J. C. (1987) Improper solutions in the analysis of covariance structures: Their interpretability and a comparison of alternate respecifications. Psychometrika, 52, 99–111. https://doi.org/10.1007/BF02293958.

    Article  Google Scholar 

  • Gibbs, R.J. (1970) Science, New Series, Vol. 170, No. 3962 pp. 1088–1090 Published by american association for the advancement of sciencestable http://www.jstor.org/stable/1730827

  • Gie, Y., & Pearce, S. (2013). A beginner’s guide to factor analysis: Focusing on exploratory factor analysis. Tutor Quant Methods Psychol., 9, 79–94.

    Google Scholar 

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press.

    Google Scholar 

  • Gough, L., & Grace, J. B. (1999). Predicting effects of environ- mental change on plant species density: experimental evaluations in a coastal wetland. Ecology, 80(3), 882–892.

    Google Scholar 

  • Grace, J. B., & Pugesek, B. H. (1997). A structural equation model of plant species richness and its application to a coastal wetland. The American Naturalist, 149, 436–460.

    Google Scholar 

  • Güler, C., Thyne, G. D., McCray, J. E., & Turner, K. A. (2002). Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology journal, 10(4), 455–474.

    Google Scholar 

  • Guthrie, A.C. (2001). Using bootstrap methods with popular statistical programs. Paper presented at the annual meeting of the Southwest Educational Research Association. New Orleans.

  • Harmouzi, O. (2010). Reconnaissance détaillée de la partie nord-est du Bassin de Saïss (MAROC): interprétation de sondages électriques verticaux par combinaison des méthodes statistique, géostatistique et d’inversion (in French). Thèse de doctorat. Univ Moulay Ismail-Univ Bordeaux 1.

  • Hayduk, L. A. (1987). Structural equation modeling with LISREL: Essentials and advances Baltimore. Maryland: Johns Hopkins University Press.

    Google Scholar 

  • INS (2014). Rapport Institut National de statistique.

  • Ireson, A., Makropoulos, C., & Maksimovic, C. (2006). Water resources modelling under data scarcity coupling MIKE BASIN and ASM Groundwater Model. Water Resources Management, 20, 567. https://doi.org/10.1007/s11269-006-3085-2.

    Article  Google Scholar 

  • Joliffe, I. T., & Morgan, B. J. T. (1992). Principal component analysis and exploratory factor analysis. Statistical methods in medical research, 1(1), 69–95.

    CAS  Google Scholar 

  • Joseph, F. H. J., Black, W. C., Babin, B. J., Anderson, R. E. (1998). Multivariate data analysis with readings (7th edn.). Englewood Cliffs: Prentice-Hall/Macmillan Publishing Company.

  • Kaiser, H. F. (1958). Thevarimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187–200. https://doi.org/10.1007/BF02289233.

    Article  Google Scholar 

  • Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39, 31–36.

    Google Scholar 

  • Kim, J. H., Kim, R. H., Lee, J., Cheong, T. J., Yum, B. W., & Chang, H. W. (2005). Multivariate statistical analysis to identify the major factors governing groundwater quality in the coastal area of Kimje, South Korea. Hydrological Processes, 19, 1261–1276. https://doi.org/10.1002/hyp.5565.

    Article  CAS  Google Scholar 

  • Kim, J. O., & Mueller, C. W. (1978). Factor analysis statistical methods and practical issues. Beverly Hills: CA Sage.

    Google Scholar 

  • Ko, D. W., & Stewart, W. P. (2002). A structural equation model of residents’ attitudes for tourism development. Tourism Management, 23(5), 521–530. https://doi.org/10.1016/s0261-5177(02)00006-7.

    Article  Google Scholar 

  • Kolsi SH, Bouri S., Hachicha W., & Ben Dhia H. (2013). Implementation and evaluation of multivariate analysis for groundwater hydrochemistry assessment in arid environments: A case study of Hajeb Elyoun–Jelma, Central Tunisia. Environmental Earth Sciences. https://doi.org/10.1007/s12665-013-2377-0.

  • Kumari, L., & Sidhu, A. S. (2016). Factors affecting quality of work life of private taxi drivers. Management and Labour Studies, 41(4), 331–354.

    Google Scholar 

  • Lefohn, A.S., Knudsen, H.P., Shadwick, D.S (2005). Using Ordinary Kriging to Estimate the Seasonal W126, and N100 24-hConcentrations for the Year 2000 and 2003. A.S.L. and Associates, 111 North Last Chance Gulch Suite 4A. Helena, Montana 59601.

  • Liu, C.-W., Jang, C.-S., Chen, C.-P., Lin, C.-N., & Lou, K.-L. (2008). Characterization of groundwater quality in Kinmen Island using multivariate analysis and geochemical modelling. Hydrological Processes, 22(3), 376–383.

    CAS  Google Scholar 

  • Ma, R., Shi, J., Liu, J., & Gui, C. (2014). Combined use of multivariate statistical analysis and hydrochemical analysis for groundwater quality evolution: A case study in north chain plain. Journal of Earth Science, 25(3), 587–597. https://doi.org/10.1007/s12583-014-0446-2.

    Article  CAS  Google Scholar 

  • Malaeb, Z. A., Summers, J. K., & Pugesek, B. H. (2000). Using structural equation modeling to investigate relationships among ecological variables. Environmental and Ecological Statistics, 7, 93–111. https://doi.org/10.1023/A.1009662930292.

    Article  Google Scholar 

  • Marsh, H. W., Balla, J. R., & McDonald, R. P. (1988). Goodness-of-fit indexes in confirmatory factor analysis: The effect of sample size. Psychological Bulletin, 103(3), 391–410.

    Google Scholar 

  • Matheron, (1970). La théorie des variables régionalisées et ses applications. Les cahiers du centre de morphologie mathématique de Fontainebleaux, fascicule 5, Ecole Nationale Supérieur des mines Paris, pp 211 (English version is available from the same publisher since 1971).

  • Melissa, A. K., George, B. A., Linda, C., Reiter, M. B., & Kenneth, H. R. (2009). Using structural equation modeling and expert elicitation to select nutrient criteria variables for south-central Florida lakes. Lake and Reservoir Management, 25(2), 119–130. https://doi.org/10.1080/02701960902821373.

    Article  Google Scholar 

  • Nas, B. (2009). Geostatistical approach to assessment of spatial distribution of groundwater quality. Polish Journal of Environmental Studies., 18(6), 1073–1082.

    CAS  Google Scholar 

  • Nevitt, J., & Hancock, G. R. (1998). Relative performance of rescaling and resampling approaches to model chi-square and parameter standard error estimation in structural equation modeling. Paper presented at the American Educational Research Association Annual Meeting, April 11–17, 1998, San Diego, CA.

  • Nevitt, J., & Hancock, G. R. (2001). Performance of bootstrapping approaches to model test statistics and parameter standard error estimation in structural equation modeling. Structural Equation Modeling, 8(3), 353–377.

    Google Scholar 

  • Roussel P., Durrieu F., Campoy E., and E.L., Akremi, A. (2002). Méthodes d’équations structurelles: Recherche et application en gestion. Economica. Paris.

  • Saidi, S. (2011). Contribution des approches paramétriques, cartographiques et statistiques à l’étude de la vulnérabilité du système aquifère phréatique de Mahdia. Thèse de doctorat. Université de Sfax, Tunisie, p. 254

  • Saidi, S., Bouri, S., Ben, D. H., & Anselme, B. (2011). Assessment of groundwater risk using intrinsic vulnerability and hazard mapping: Application to Souassi aquifer Tunisian Sahel. Agricultural Water Management, 98(10), 1671–1682. https://doi.org/10.1016/j.agwat.2011.06.005.

    Article  Google Scholar 

  • Sajil Kumar, P. J., Elang, L., & James, E. J. (2014). Assessment of hydrochemistry and groundwater quality in the coastal area of South Chennai. India Arab J Geosci, 7, 2641. https://doi.org/10.1007/s12517-013-0940-3.

    Article  CAS  Google Scholar 

  • Sanchez-Martoz, F., Jimenez, E. R., & Pulido, B. A. (2001). Mapping groundwater quality variables using PCA and geostatistics: A case study of BajoAndarax, southeastern Spain. Hydrological Sciences Journal, 46(2), 227–242.

    Google Scholar 

  • Schmidt, K. M., & Embretson, S. E. (2003). Item response theory and measuring instruments in Handbook of Psychology. New York: John Wiley.

    Google Scholar 

  • Schumacker, R. E., & Lomax, R. G. (2010). A beginner’s guide to structural equation modeling (3rd ed.). New York: Routledge/Taylor & Francis Group.

    Google Scholar 

  • Shipley, B. (2000). Cause and correlation in biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Simsek, C., & Gunduz, O. (2007). IWQ index: A GIS-integrated technique to assess irrigation water quality. Environmental Monitoring and Assessment, 128(1–3), 277–300. https://doi.org/10.1007/s10661-006-9312-8.

    Article  CAS  Google Scholar 

  • Taany, R. A., Tahboub, A. B., & Saffarini, G. A. (2009). Geostatistical analysis of spatiotemporal variability of groundwater level fluctuations in Amman-Zarqa basin, Jordan: A case study. Environmental Geology, 57(3), 525–535.

    Google Scholar 

  • Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). New York: Allyn and Bacon.

    Google Scholar 

  • Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38(1), 1–10.

    Google Scholar 

  • Vile, D., Shipley, B., & Garnier, E. (2006). A structural equation model to integrate changes in functional strategies during old-field succession. Ecology, 87(2), 504–517.

    Google Scholar 

  • Western, B. (1995). Concepts and suggestions for robust regression analysis. American Journal of Political Science, 39, 786–817.

    Google Scholar 

  • Wold, S., Geladi, P., Esbensen, K., & Öhman, J. (1987). Multi-way principal components-and PLS-analysis. Journal of chemometrics, 1(1), 41–56.

    CAS  Google Scholar 

  • Yadama, G. N., & Pandey, S. (1995). Effect of sample size on goodness-of-fit indices in structural equation models. Journal of Social Service Research, 20(3–4), 49–70.

    Google Scholar 

  • Yidana, S. M., Banoeng-Yakubo, B., & Akabzaa, T. M. (2010). Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin, Ghana. Journal of African Earth Science, 58(2), 220–234.

    CAS  Google Scholar 

  • Yusoff, M.S.B. (2010). The reliability and validity of the postgraduate stressor questionnaire (psq) among postgraduate medical trainees.

Download references

Acknowledgements

The Authors acknowledge the managers of the Regional Commissionership of Agricultural Development of Mahdia for providing hydrological data to carry out this study within the LR3E Laboratory of the Sfax University. The authors would also like to express their thanks to Mr. Bassem Hidouri (University of Gafsa) and Mr. Abdelmajid Dammak (University of Sfax) for carefully editing and proofreading English of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumaya Hajji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajji, S., Karoui, S., Nasri, G. et al. EFA-CFA integrated approach for groundwater resources sustainability in agricultural areas under data scarcity challenge: case study of the Souassi aquifer, Central-eastern Tunisia. Environ Dev Sustain 23, 12024–12043 (2021). https://doi.org/10.1007/s10668-020-01155-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-01155-5

Keywords

Navigation