Skip to main content

Advertisement

Log in

Sheka forest biosphere reserve beekeeping practices and characteristics of Schefflera abyssinica honey, Ethiopia

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Forests are the food and home for honeybees; and honeybees reserve the environment, increase agriculture productivity, sustain livelihoods, and provide food security. The objective of this research was to study the beekeeping practices of Sheka Forest Biosphere Reserve and quantify the quality attributes of Schefflera abyssinica honey. Primary and secondary data collection methods were used to collect data from key informants. Thirty-two honey samples were collected from traditional hives. The botanical origin of honey was determined using harmonized methods of Melissopalynology. Sheka forest accommodates 191,712 honeybees (91.02% from traditional and 8.99% from transitional and frame hives). Except for honey harvesting in the forest by mounting the tall trees, the majority of beekeeping activities executed by females. The dominant honey plants were Schefflera abyssinica, Croton macrostachyus, Vernonia amygdalina, Manilkara butugi, Syzygium guineense, Coffea arabica, Aningeria altissima, Eucalyptus globulus, Olea capensis, Maesa lanceolata, Allophylus abyssinicus, Ilex mitis, Ekebergia capensis, and Albizia schimperiana. In Sheka Forest Biosphere Reserve, a beekeeper accommodates 2–5 (3.27 ± 0.90) apiaries; and 105 ± 52.78, 8.78 ± 4.41, and 4.38 ± 2.83 colonies in traditional, transitional, and frame hives, respectively. Honey can be harvested three to four times a year (April–May, July–August, and January–February). Schefflera abyssinica honey had a moisture (20.24 ± 1.29 g/100 g), water activity (0.60 ± 0.02), pH (3.65 ± 0.24) and free acid (24.50 ± 1.91), ash (0.27 ± 0.04 g/100 g), electrical conductivity (0.31 ± 0.02), hydroxymethylfurfural (1.18 ± 0.11 mg/kg), specific rotation (−214.62 ± 16.83 \([\alpha ]_{D}^{20}\)), diastase activity (4.76 ± 0.54), and invertase number (3.60 ± 1.51). Fructose, glucose, sucrose, maltose, and total sugars were 38.49 ± 1.21, 29.54 ± 3.85, 2.09 ± 0.10, 0.53 ± 0.31, and 70.64 ± 4.75, respectively. Description of forest potential and characterization of honey help for proper handling of the forest in a standing position, which sustainably exploits the forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data used from UNESCO Nomination form, 2011, and published on Van Opstal et al. (2019)

Fig. 2

Source: SZLA (2013)

Fig. 3

Similar content being viewed by others

References

  • Adgaba, N. (1999). Quality state and grading of Ethiopian honey. In Proceeding of 1st National Conference of Ethiopian Beekeepers Association (pp. 74–82), 7–8 June, 1999, Addis Ababa, Ethiopia.

  • Adgaba, N., Al-Ghamdi, A. A., Getachew, A., Tadesse, Y., Belay, A., Ansari, M. J., et al. (2017). Characterization of honeys by their botanical and geographical origins based on physico-chemical properties and chemo-metrics analysis. Journal of Food Measurement and Characterization, 11(3), 1106–1117.

    Article  Google Scholar 

  • Al-Farsi, M., Al-Belushi, S., Al-Amri, A., Al-Hadhrami, A., Al-Rusheidi, M., & Al-Alawi, A. (2018). Quality evaluation of Omani honey. Food Chemistry, 262, 162–167.

    Article  CAS  Google Scholar 

  • An, K., & Ouyang, Y. (2016). Robust grain supply chain design considering post-harvest loss and harvest timing equilibrium. Transportation Research Part E: Logistics and Transportation Review, 88, 110–128.

    Article  CAS  Google Scholar 

  • Anjos, O., Campos, M. G., Ruiz, P. C., & Antunes, P. (2015). Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chemistry, 169, 218–223.

    Article  CAS  Google Scholar 

  • AOAC. (1990). Official methods of analysis (15th ed.). Washington, DC: Association of Official Analytical Chemists.

    Google Scholar 

  • Belay, A., Haki, G. D., Birringer, M., Borck, H., Addi, A., Baye, K., et al. (2017a). Rheology and botanical origin of Ethiopian monofloral honey. LWT, 75, 393–401.

    Article  CAS  Google Scholar 

  • Belay, A., Haki, G. D., Birringer, M., Borck, H., Lee, Y. C., Cho, C. W., et al. (2017b). Sugar profile and physicochemical properties of Ethiopian monofloral honey. International Journal of Food Properties, 20(11), 2855–2866.

    Article  CAS  Google Scholar 

  • Belay, A., Haki, G. D., Birringer, M., Borck, H., Lee, Y. C., Kim, K. T., et al. (2017c). Enzyme activity, amino acid profiles and hydroxymethylfurfural content in Ethiopian monofloral honey. Journal of Food Science and Technology, 54(9), 2769–2778.

    Article  CAS  Google Scholar 

  • Belay, A., Solomon, W. K., Bultossa, G., Adgaba, N., & Melaku, S. (2013). Physicochemical properties of the Harenna forest honey, Bale, Ethiopia. Food Chemistry, 141(4), 3386–3392.

    Article  CAS  Google Scholar 

  • Belay, A., Solomon, W. K., Bultossa, G., Adgaba, N., & Melaku, S. (2015). Botanical origin, colour, granulation, and sensory properties of the Harenna forest honey, Bale, Ethiopia. Food Chemistry, 167, 213–219.

    Article  CAS  Google Scholar 

  • Bergamo, G., Seraglio, S. K. T., Gonzaga, L. V., Fett, R., & Costa, A. C. O. (2019). Physicochemical characteristics of bracating a honeydew honey and blossom honey produced in the state of Santa Catarina: An approach to honey differentiation. Food Research International, 116, 745–754.

    Article  CAS  Google Scholar 

  • Bogdanov, S. (2001). Codex Alimentarius: Draft Revised Standard for Honey Bee Department. Bern: Federal Dairy Research Institute.

    Google Scholar 

  • Bogdanov, S. (2009). Harmonised Methods of the International Honey Commission. IHC (pp. 1–63). Retrieved from http://www.bee-hexagon.net/en/network.htm.

  • Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444–1449.

    Article  CAS  Google Scholar 

  • Bonvehi, J. S., Coll, F. V., & Bermejo, J. O. (2019). Characterization of avocado honey (Persea americana Mill.) produced in Southern Spain. Food Chemistry, 287, 214–221.

    Article  Google Scholar 

  • Boussaid, A., Chouaibi, M., Rezig, L., Hellal, R., Donsì, F., Ferrari, G., et al. (2018). Physicochemical and bioactive properties of six honey samples from various floral origins from Tunisia. Arabian Journal of Chemistry, 11(2), 265–274.

    Article  CAS  Google Scholar 

  • Cantarelli, M. A., Pellerano, R. G., Marchevsky, E. J., & Camiña, J. M. (2008). Quality of honey from Argentina: Study of chemical composition and trace elements. Journal of the Argentine Chemical Society, 96, 33–41.

    CAS  Google Scholar 

  • Chefrour, C., Draiaia, R., Tahar, A., Kaki, Y. A., Bennadja, S., & Battesti, M. J. (2009). Physicochemical characteristics and pollen spectrum of some north-east Algerian honeys. African Journal of Food, Agriculture, Nutrition and Development, 9(5), 1276–1293.

    Article  CAS  Google Scholar 

  • Chen, C. (2019). Relationship between water activity and moisture content in floral honey. Foods, 8(1), 30.

    Article  CAS  Google Scholar 

  • Cianciosi, D., Forbes-Hernández, T., Afrin, S., Gasparrini, M., Reboredo-Rodriguez, P., Manna, P., et al. (2018). Phenolic compounds in honey and their associated health benefits: A review. Molecules, 23(9), 2322.

    Article  Google Scholar 

  • Corvucci, F., Nobili, L., Melucci, D., & Grillenzoni, F. V. (2015). The discrimination of honey origin using melissopalynology and Raman spectroscopy techniques coupled with multivariate analysis. Food Chemistry, 169, 297–304.

    Article  CAS  Google Scholar 

  • Croitoru, L. (2007). Valuing the non-timber forest products in the Mediterranean region. Ecological Economics, 63(4), 768–775.

    Article  Google Scholar 

  • CSA. (2015). Federal democratic republic of Ethiopia, central statistical agency agricultural sample survey 2014/15 [2007 E.C.] volume II. Report on Livestock and Livestock Characteristics. Addis Ababa, Ethiopia.

  • de Sousa, J. M. B., de Souza, E. L., Marques, G., de Toledo, Benassi M., Gullón, B., Pintado, M. M., et al. (2016). Sugar profile, physicochemical and sensory aspects of monofloral honeys produced by different stingless bee species in Brazilian semi-arid region. LWT-Food Science and Technology, 65, 645–651.

    Article  Google Scholar 

  • Dominguez, M. A., & Centurión, M. E. (2015). Application of digital images to determine color in honey samples from Argentina. Microchemical Journal, 118, 110–114.

    Article  CAS  Google Scholar 

  • Dżugan, M., Sowa, P., Kwaśniewska, M., Wesołowska, M., & Czernicka, M. (2017). Physicochemical parameters and antioxidant activity of bee honey enriched with herbs. Plant Foods for Human Nutrition, 72(1), 74–81.

    Article  Google Scholar 

  • El Sohaimy, S. A., Masry, S. H. D., & Shehata, M. G. (2015). Physicochemical characteristics of honey from different origins. Annals of Agricultural Sciences, 60(2), 279–287.

    Article  Google Scholar 

  • Estevinho, L. M., Feás, X., Seijas, J. A., & Vázquez-Tato, M. P. (2012). Organic honey from Trás-Os-Montes region (Portugal): Chemical, palynological, microbiological and bioactive compounds characterization. Food and Chemical Toxicology, 50(2), 258–264.

    Article  CAS  Google Scholar 

  • EU. (2007). Council Directive 834/2007 on organic production and labelling of organic products. Official Journal of the European Communities L, 189, 1–23.

    Google Scholar 

  • European Economic Community (EEC). (2002). Council Directive of 20 December 2001 relating to honey. Official Journal of the European Communities, 110, 47–50.

    Google Scholar 

  • Felsner, M. L., Cano, C. B., Bruns, R. E., Watanabe, H. M., Almeida-Muradian, L. B. D., & Matos, J. D. R. (2004). Characterization of monofloral honeys by ash contents through a hierarchical design. Journal of Food Composition and Analysis, 17(6), 737–747.

    Article  CAS  Google Scholar 

  • Fichtl, R., & Admasu, A. (1994). Honeybee flora of Ethiopia (p. 510). Weikersheim: Margraf Verlag.

    Google Scholar 

  • Girma, J., & Gardebroek, C. (2015). The impact of contracts on organic honey producers’ incomes in southwestern Ethiopia. Forest Policy and Economics, 50, 259–268.

    Article  Google Scholar 

  • González-Miret, M. L., Terrab, A., Hernanz, D., Fernández-Recamales, M. Á., & Heredia, F. J. (2005). Multivariate correlation between color and mineral composition of honeys and by their botanical origin. Journal of Agricultural and Food Chemistry, 53(7), 2574–2580.

    Article  Google Scholar 

  • Gossaye, Y., Deyessa, N., Berhane, Y., Ellsberg, M., Emmelin, M., Ashenafi, M., et al. (2003). Women’s health and life events study in rural Ethiopia. Ethiopian Journal of Health Development, 17(5), 1–47.

    Google Scholar 

  • Grigoryan, K. (2016). Safety of honey. In Regulating safety of traditional and ethnic foods (pp. 217–246). Cambridge: Academic Press.

  • Jackson, R. B., Randerson, J., Canadell, J. G., Anderson, R. G., Avissar, R., Baldocchi, D. D., et al. (2008). Protecting climate with forests. Environmental Research Letters, 3(4), 44006.

    Article  Google Scholar 

  • Kadri, S. M., Zaluski, R., Lima, G. P. P., Mazzafera, P., & de Oliveira, Orsi R. (2016). Characterization of Coffea arabica monofloral honey from Espírito Santo, Brazil. Food Chemistry, 203, 252–257.

    Article  CAS  Google Scholar 

  • Kaškonienė, V., & Venskutonis, P. R. (2010). Floral markers in honey of various botanical and geographic origins: A review. Comprehensive Reviews in Food Science and Food Safety, 9(6), 620–634.

    Article  Google Scholar 

  • Kavanagh, S., Gunnoo, J., Passos, T. M., Stout, J. C., & White, B. (2019). Physicochemical properties and phenolic content of honey from different floral origins and from rural versus urban landscapes. Food Chemistry, 272, 66–75.

    Article  CAS  Google Scholar 

  • Khanbabaie, H., Khezri, M., Bahmani, H. R., & Salehi, S. (2019). The effect of storage time and Container on physicochemical parameter of Kurdistan honey. Journal of Veterinary Research, 73(4), 427–434.

    Google Scholar 

  • Kuś, P. M., Congiu, F., Teper, D., Sroka, Z., Jerković, I., & Tuberoso, C. I. G. (2014). Antioxidant activity, color characteristics, total phenol content and general HPLC fingerprints of six Polish unifloral honey types. LWT-Food Science and Technology, 55(1), 124–130.

    Article  Google Scholar 

  • Lazarević, K. B., Jovetić, M. S., & Tešić, Ž. L. (2017). Physicochemical parameters as a tool for the assessment of origin of honey. Journal of AOAC International, 100(4), 840–851.

    Article  Google Scholar 

  • Melaku, E., Ewnetu, Z., & Teketay, D. (2014). Non-timber forest products and household incomes in Bonga forest area, southwestern Ethiopia. Journal of Forestry Research, 25(1), 215–223.

    Article  Google Scholar 

  • Mouhoubi-Tafinine, Z., Ouchemoukh, S., Louaileche, H., & Tamendjari, A. (2018). Effect of storage on hydroxymethylfurfural (HMF) and color of some Algerian honey. International Food Research Journal, 25(3), 1044–1050.

    CAS  Google Scholar 

  • Oddo, L. P., & Bogdanov, S. (2004). Determination of honey botanical origin: Problems and issues. Apidologie, 35(Suppl. 1), S2–S3.

    Article  Google Scholar 

  • Ohe, W. V. D., Oddo, L. P., Piana, M. L., Morlot, M., & Martin, P. (2004). Harmonized methods of melissopalynology. Apidologie, 35, S18–S25.

    Article  Google Scholar 

  • Pascual-Mate, A., Osés, S. M., Marcazzan, G. L., Gardini, S., Muiño, M. A. F., & Sancho, M. T. (2018). Sugar composition and sugar-related parameters of honeys from the northern Iberian Plateau. Journal of Food Composition and Analysis, 74, 34–43.

    Article  CAS  Google Scholar 

  • Pereira, C., Barreira, J. C., Calhelha, R. C., Lopes, M., Queiroz, M. J. R., Vilas-Boas, M., et al. (2015). Is honey able to potentiate the antioxidant and cytotoxic properties of medicinal plants consumed as infusions for hepatoprotective effects. Food & Function, 6(5), 1435–1442.

    Article  CAS  Google Scholar 

  • Sakač, M. B., Jovanov, P. T., Marić, A. Z., Pezo, L. L., Kevrešan, Ž. S., Novaković, A. R., et al. (2019). Physicochemical properties and mineral content of honey samples from Vojvodina (Republic of Serbia). Food Chemistry, 276, 15–21.

    Article  Google Scholar 

  • Shapla, U. M., Solayman, M., Alam, N., Khalil, M. I., & Gan, S. H. (2018). 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: Effects on bees and human health. Chemistry Central Journal, 12(1), 1–18.

    Article  Google Scholar 

  • Silva, L. R., Sousa, A., & Taveira, M. (2017). Characterization of Portuguese honey from Castelo Branco region according to their pollen spectrum, physicochemical characteristics and mineral contents. Journal of Food Science and Technology, 54(8), 2551–2561.

    Article  CAS  Google Scholar 

  • Soares, S., Amaral, J. S., Oliveira, M. B. P., & Mafra, I. (2017). A comprehensive review on the main honey authentication issues: Production and origin. Comprehensive Reviews in Food Science and Food Safety, 16(5), 1072–1100.

    Article  CAS  Google Scholar 

  • Song, Y. Q., Milne, R. I., Zhou, H. X., Ma, X. L., Fang, J. Y., & Zha, H. G. (2019). Floral nectar chitinase is a potential marker for monofloral honey botanical origin authentication: A case study from loquat (Eriobotrya japonica Lindl.). Food Chemistry, 282, 76–83.

    Article  CAS  Google Scholar 

  • SZLA. (2013). Sheka zone livestock agency 2013 annual report. Report No: 4th Quarter, Sheka, Ethiopia.

  • Van Opstal, M., Oosterlynck, B., Belay, M., Erens, J., & De Beenhouwer, M. (2019). First assessment of bird diversity in the UNESCO Sheka Forest Biosphere Reserve, southwestern Ethiopia: Species richness, distribution and potential for avian conservation. Journal of Threatened Taxa, 11(7), 13850–13867.

    Article  Google Scholar 

  • Wilczyńska, A. (2014). Effect of filtration on colour, antioxidant activity and total phenolics of honey. LWT-Food Science and Technology, 57(2), 767–774.

    Article  Google Scholar 

  • Wright, G. A., Nicolson, S. W., & Shafir, S. (2018). Nutritional physiology and ecology of honey bees. Annual Review of Entomology, 63, 327–344.

    Article  CAS  Google Scholar 

  • Zábrodská, B., & Vorlová, L. (2015). Adulteration of honey and available methods for detection: A review. Acta Veterinaria Brno, 83(10), 85–102.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to express his gratitude to GIZ—Green Innovation, and MELCA—Ethiopia, Dr. Million Belay and Keria Yasin for having this assignment. I am extremely thankful to Dr. Jurgen Greiling, senior advisor for EAB, who is working to support the Ethiopian bee resource. The involvement of Sheka forest beekeepers, Beekeeper cooperatives and Unions, the Sheka Zone Livestock Agency, Sheka zone Marketing and Cooperative Agency, and Mr. Mengistu Gawoo are highly appreciated. The author would like also to thank Hirut Abebe and Tmhrt Abera for properly straining and preparing the honey sample for laboratory analysis.

Author information

Authors and Affiliations

Authors

Contributions

All the activities of the study are done by Abera Belay. These are data collection, honey sample collection, laboratory analysis, data analysis, and draft manuscript writing.

Corresponding author

Correspondence to Abera Belay.

Ethics declarations

Conflict of interest

The author does not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belay, A. Sheka forest biosphere reserve beekeeping practices and characteristics of Schefflera abyssinica honey, Ethiopia. Environ Dev Sustain 23, 11818–11836 (2021). https://doi.org/10.1007/s10668-020-01143-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-01143-9

Keywords

Navigation