Skip to main content
Log in

Stability consistency and trend mapping of seasonally inundated wetlands in Moribund deltaic part of India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The Ganga-Padma moribund deltaic zone contains plenty of small seasonal wetlands. In this paper we mapped the temporal hydrological dynamics of floodplain wetlands in the Ganga-Padma moribund deltaic zone. To evaluate the trend in wetland changes over time we used a time-series of Landsat images from 1987 to 2016 and adopted Water Presence Frequency (WPF), Standard Deviation, and Trend Analysis for stability and trend of water presence and change over time. Normalized Difference Water Index is used for wetland mapping for both pre- and post-monsoon seasons using the 30 years Landsat images. The result shows sequential changes in trend of wetland area and nature of deviation in water availability in wetland over time. More than 85% wetland area is prone to shallowing of depth and out of which 25% area is highly infected to this problem as found from wetland trend analysis. Standard deviation approach and trend analysis approach are used for detecting pixel-wise dynamics of wetland and trend of wetland change over the selected period of time based on the same images. The entire time spectrum is subdivided into three phases for detecting phasal change of water presence frequency (WPF) or stability of wetland. Among the total wetland area, 21.22% appeared as highly stable (high WPF) and 43.71% emerged as instable (low WPF). Only 14.56% wetland area recorded low departure in water availability, and these are usually found in the stable wetland part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allison, M. A., Khan, S. R., Goodbred, S. L., & Kuehl, S. A. (2003). Stratigraphic evolution of the late Holocene Ganges-Brahmaputra lower delta plain. Sedimentary Geology, 155(3), 317–342.

    Article  CAS  Google Scholar 

  • Anon. (1998). Wetlands of India, Space Application Centre (ISRO), Ahmedabad. Report no. RSAM/SAC/RESA/PR/01/98/ pp. 1.

  • Bagchi, K., & Mukerjee, K. N. (1983). Diagnostic survey of West Bengal(s). Dept. of Geography, Calcutta University, Pantg Delta & Rarh Bengal; pp. 17–19: 42–58.

  • Bakama, B. (2010). Contemporary geography of Uganda: Water and wetland resources in Uganda. Tanzania: NkukinaNyota Ltd.

    Google Scholar 

  • Bala, G., & Mukherjee, A. (2010). Inventory of wetlands of Nadia District, West Bengal, India and their characterization as natural resources. Journal of Environment and Sociobiology, 7(2), 93–106.

    Google Scholar 

  • Borro, M., Morandeira, N., Salvia, M., Minotti, P., Perna, P., & Kandus, P. (2014). Mapping shallow lakes in a large South American floodplain: a frequency approach on multitemporal Landsat TM/ETM data. Journal of Hydrology, 512, 39–52. https://doi.org/10.1016/j.jhydrol.2014.02.057.

    Article  Google Scholar 

  • Brief industrial profile of Nadia district West Bengal. (2011). MSME-Development Institute Kolkata

  • Bwangoy, J. R. B., Hansen, M. C., Roy, D. P., De Grandi, G., & Justice, C. O. (2010). Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sensing of Environment, 114(1), 73–86. https://doi.org/10.1016/j.rse.2009.08.004.

    Article  Google Scholar 

  • Cattaneo, A., Correggiari, A., Langone, L., & Trincardi, F. (2003). The late-Holocene Gargano subaqueous delta, adriatic shelf: Sediment pathways and supply fluctuations. Marine Geology, 193(1), 61–91.

    Article  Google Scholar 

  • Census of India. (1991).

  • Chatterjee, K. D., & Mazumdar, N. G. (1972). Drainage problems of the Bhagirathi Basin. In K. Bagchi (Ed.), The Bhagirathi Hooghly Basin1 (pp. 78–88). Kolkata: Sri Sibendra nath Kanjilal.

    Google Scholar 

  • Corcoran, J., Knight, J., Brisco, B., Kaya, S., Cull, A., & Murnaghan, K. (2012). The integration of optical, topographic, and radar data for wetland mapping in northern Minnesota. Canadian Journal of Remote Sensing, 37(5), 564–582. https://doi.org/10.5589/m11-067.

    Article  Google Scholar 

  • Das, R. T., & Pal, S. (2016). Identification of water bodies from multispectral landsat imageries of Barind Tract of West Bengal. International Journal of Innovative Research and Review, 4(1), 26–37.

    Google Scholar 

  • District Census Handbook Nadia, West Bengal. (2011). Directorate of census operations West Bengal, census of India 2011. Series-20, Part XII-B.

  • Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated water extraction index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23–35. https://doi.org/10.1016/j.rse.2013.08.029.

    Article  Google Scholar 

  • Gao, B. C. (1996). NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266.

    Article  Google Scholar 

  • Garreet, J. H. E. (1910). Bengal District Gazetteers Nadia.

  • Gleason, R. A., Euliss, N. H., Tangen, B. A., Laubhan, M. K., & Browne, B. A. (2011). USDA conservation program and practice effects on wetland ecosystem services in the Prairie Pothole Region. Ecological Applications, 21(1), S65–S68.

    Article  Google Scholar 

  • Goodbred, S. L., & Kuehl, S. A. (2000). The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: Late Quaternary stratigraphy and evolution of the Ganges-Brahmaputra delta. Sedimentary Geology, 133(3), 227–248.

    Article  Google Scholar 

  • Gopal, B. (2013). Future of wetlands in tropical and subtropical Asia, especially in the face of climate change. Aquatic sciences, 75(1), 39–61.

    Article  Google Scholar 

  • Goward, S., Arvidson, T., Williams, D., Faundeen, J., Irons, J., & Franks, S. (2006). Historical record of Landsat global coverage. Photogrammetric Engineering and Remote Sensing, 72(10), 1155–1169.

    Article  Google Scholar 

  • Grant, R. F., Desai, A., & Sulman, B. (2012). Modelling contrasting responses of wetland productivity to changes in water table depth. Biogeosciences. https://doi.org/10.5194/bgd-9-5579-2012.

    Article  Google Scholar 

  • Hamilton, F. B. (1822). An account of the fishes found in the river Ganges and its branches 7, 405.

  • Hess, L. L., Melack, J. M., Affonso, A. G., Barbosa, C., Gastil-Buhl, M., & Novo, E. M. (2015). Wetlands of the lowland Amazon basin: Extent, vegetative cover, and dual-season inundated area as mapped with JERS-1 synthetic aperture radar. Wetlands, 35(4), 745–756. https://doi.org/10.1007/s13157-015-0666-y.

    Article  Google Scholar 

  • Horwitz, P., & Finlayson, C. M. (2011). Wetlands as settings for human health: incorporating ecosystem services and health impact assessment into water resource management. BioScience, 61(9), 678–688. https://doi.org/10.1525/bio.2011.61.9.6.

    Article  Google Scholar 

  • Huang, C., Peng, Y., Lang, M., Yeo, I. Y., & McCarty, G. (2014). Wetland inundation mapping and change monitoring using Landsat and airborne LiDARdata. Remote Sensing of Environment, 141, 231–242. https://doi.org/10.1016/j.rse.2013.10.020.

    Article  Google Scholar 

  • Jiang, H., Feng, M., Zhu, Y., Lu, N., Huang, J., & Xiao, T. (2014). An automated method for extracting rivers and lakes from Landsat imagery. Remote Sensing, 6(6), 5067–5089. https://doi.org/10.3390/rs6065067.

    Article  Google Scholar 

  • Jiping, Z., Yili, Z., Linshan, L., Mingjun, D., & Xueru, Z. (2011). Identifying alpine wetlands in the Damqu River Basin in the source area of the Yangtze River using object-based classification method. Journal of Resources and Ecology, 2(2), 186–192. https://doi.org/10.3969/j.issn.1674-764x.2011.02.013.

    Article  Google Scholar 

  • Junk, W. J., Bayley, P. B., & Sparks, R. E. (1989). The flood pulse concept in river-floodplain systems. Canadian special publication of fisheries and aquatic sciences, 106(1), 110–127.

    Google Scholar 

  • Klemas, V. (2011). Remote sensing of wetlands: Case studies comparing practical techniques. Journal of Coastal Research, 27(3), 418–427.

    Article  Google Scholar 

  • Kumar, S., Halder, S., & Singhal, D. C. (2011). Groundwater resources management through flow modeling in lower part of Bhagirathi—Jalangi interfluve, Nadia, West Bengal. Journal of the Geological Society of India, 78(6), 587–598.

    Article  Google Scholar 

  • Lambs, L., Loudes, J. P., & Berthelot, M. (2002). The use of the stable oxygen isotope (180) to trace the distribution and uptake of water riparian woodlands. Nukleonika, 47(1), 69–72.

    Google Scholar 

  • Li, J., & Chen, W. (2005). A rule-based method for mapping Canada’s wetlands using optical, radar and DEM data. International Journal of Remote Sensing, 26(22), 5051–5069.

    Article  Google Scholar 

  • Li, J., & Wang, S. (2015). An automatic method for mapping inland surface waterbodies with Radarsat-2 imagery. International Journal of Remote Sensing, 36(5), 1367–1384.

    Article  Google Scholar 

  • Loveland, T. R., & Dwyer, J. L. (2012). Landsat: Building a strong future. Remote Sensing of Environment, 122, 22–29. https://doi.org/10.1016/j.rse.2011.09.022.

    Article  Google Scholar 

  • Mabwoga, S. O., Chawla, A., & Thukral, A. K. (2010). Assessment of water quality parameters of the Harike wetland in India, a Ramsar site, using IRS LISS IV satellite data. Environmental Monitoring and Assessment, 170(1), 117–128. https://doi.org/10.1007/s10661-009-1220-2.

    Article  CAS  Google Scholar 

  • Mandal, D. (2017). Geo-spatial dynamics of wetland regime in Murshidabad District: A hydrogeomorphological study. Ph.D. thesis, University of GourBanga, West Bengal, India, pp. 111–115.

  • Mandal, D., & Pal, S. (2016). Monitoring dual-season hydrological dynamics of seasonally flooded wetlands in the lower reach of Mayurakshi River Eastern India. Geocarto International. https://doi.org/10.1080/10106049.2016.1240720.

    Article  Google Scholar 

  • McFeeters, S. K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432.

    Article  Google Scholar 

  • McFeeters, S. K. (2013). Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sensing, 5(7), 3544–3561. https://doi.org/10.3390/rs5073544.

    Article  Google Scholar 

  • MEA (Millennium Ecosystem Assessment). (2005). http://www.maweb.org/en/index.aspx.

  • MedWet. (2016). The Ramsar convention. http://medwet.org/aboutwetlands/ramsarconvention/.

  • Mikhailov, V. N., & Dotsenko, M. A. (2007). Processes of delta formation in the mouth area of the Ganges and Brahmaputra Rivers. Water Resources, 34(4), 385–400.

    Article  CAS  Google Scholar 

  • Ministry of Environment and Forest (MoEF). (1990). Wetlands of India: A Directory. New Delhi: Ministry of Environment and Forest, Govt. of India.

    Google Scholar 

  • Mistch, W. J., & Gosselink, J. G. (1986). Wetlands. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Moreno-Mateos, D., Power, M. E., Comín, F. A., & Yockteng, R. (2012). Structural and functional loss in restored wetland ecosystems. PLoSbiology, 10(1), e1001247.

    CAS  Google Scholar 

  • Oldham, T. (1870). Address of the President. In Proceedings, Asiatic society of Bengal, Kolkata (pp 40–52).

  • Pal, S. (2011). Conservation or conversion of wetland in the Riverine Bengal basin: A question of hydro-ecological profit loss. Practising Geographers, Kolkata, 15(1), 09–24.

    Google Scholar 

  • Pal, S. (2015). Impact of Massanjore Dam on hydro-geomorphological modification of Mayurakshi River, Eastern India. Environment Development and Sustainability. https://doi.org/10.1007/s10668-015-9679-1.

    Article  Google Scholar 

  • Pal, S. (2016a). Impact of Tilpara barrage on backwater reach of Kushkarni River: A tributary of Mayurakshi River. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-016-9833-4.

    Article  Google Scholar 

  • Pal, S. (2016b). Impact of water diversion on hydrological regime of Atreyee River of Indo-Bangladesh. International Journal of River Basin Management. https://doi.org/10.1080/15715124.2016.1194282.

    Article  Google Scholar 

  • Pal, S., et al. (2012). Existing ground hydrological condition and agricultural sustainability: A study on Moribund Delta of West Bengal. In K. M. B. Rahim (Ed.), Sustainable agriculture and environment (pp. 17–35). New Delhi: New Delhi Publishers.

    Google Scholar 

  • Pal, S., & Talukdar, S. (2018). Drivers of vulnerability to wetlands in Punarbhaba river basin of India-Bangladesh. Ecological Indicators, 93, 612–626. https://doi.org/10.1016/j.ecolind.2018.05.043.

    Article  Google Scholar 

  • Pal, S., Saha, A., & Das, T. (2018). Analysis of flow modifications and stress in the Tangon river basin of the Barind tract. International Journal of River Basin Management. https://doi.org/10.1080/15715124.2018.1546714.

    Article  Google Scholar 

  • Pal, S., & Akoma, O. C. (2009). Water scarcity in wetland area within Kandi Block of West Bengal: A hydro-ecological assessment. Ethiopian Journal of Environmental Studies and Management, 2(3), 2009.

    Article  Google Scholar 

  • Parmuchi, M. G., Karszenbaum, H., & Kandus, P. (2002). Mapping wetlands using multi-temporal RADARSAT-1 data and a decision-based classifier. Canadian Journal of Remote Sensing, 28(2), 175–186.

    Article  Google Scholar 

  • Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., & Stromberg, J. C. (1997). The natural flow regime. BioScience, 47(11), 769–784.

    Article  Google Scholar 

  • Qiao, C., Luo, J., Sheng, Y., Shen, Z., Zhu, Z., & Ming, D. (2012). An adaptive water extraction method from remote sensing image based on NDWI. Journal of the Indian Society of Remote Sensing, 40(3), 421–433. https://doi.org/10.1007/s12524-011-0162-7.

    Article  Google Scholar 

  • Ramsar Convention on Wetlands. (2018). Global wetland outlook: State of the World’s wetlands and their services to people. Gland, Switzerland: Ramsar Convention Secretariat.

    Google Scholar 

  • Rawat, J. S., & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 18(1), 77–84.

    Article  Google Scholar 

  • Richter, B. D., Baumgartner, J. V., Wigington, R., & Braun, D. P. (1997). How much water does a river need? Freshwater Biology, 37, 231–249.

    Article  Google Scholar 

  • Rokni, K., Ahmad, A., Selamat, A., & Hazini, S. (2014). Water feature extraction and change detection using multitemporal Landsat imagery. Remote Sensing, 6(5), 4173–4189. https://doi.org/10.3390/rs6054173.

    Article  Google Scholar 

  • Rudra, K. (2014). Changing river courses in the western part of the Ganga-Brahmaputra delta. Geomorphology, 227, 87–100.

    Article  Google Scholar 

  • SAC (Space Application Centre). (2011). National wetland atlas SAC/RESA/AFEG/NWIA/ATLAS/2011. Ahmedabad: Space Application Centre, ISRO.

    Google Scholar 

  • Saha, T. K., & Pal, S. (2018). Emerging conflict between agriculture extension and physical existence of wetland in post-dam period in Atreyee River basin of Indo-Bangladesh. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-018-0099-x.

    Article  Google Scholar 

  • Saha, T. K., & Pal, S. (2019). Exploring physical wetland vulnerability of Atreyee river basin in India and Bangladesh using logistic regression and fuzzy logic approaches. Ecological Indicators, 98, 251–265.

    Article  Google Scholar 

  • Sarkar, A., Sengupta, S. M. J. M., McArthur, J. M., Ravenscroft, P., Bera, M. K., Bhushan, R., & Agrawal, S. (2009). Evolution of Ganges-Brahmaputra western delta plain: Clues from sedimentology and carbon isotopes. Quaternary Science Reviews, 28(25), 2564–2581. https://doi.org/10.1016/j.quascirev.2009.05.016.

    Article  Google Scholar 

  • Sengupta, M. K., Hossain, A., Ahamed, S., Das, B., Nayak, B., Pal, A., Chowdhury, T. R. (2009). Groundwater arsenic contamination situation in West Bengal, India: A nineteen year study. Editorial Board, 24(2&3).

  • Sun, F., Sun, W., Chen, J., & Gong, P. (2012). Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. International Journal of Remote Sensing, 33(21), 6854–6875. https://doi.org/10.1080/01431161.2012.692829.

    Article  Google Scholar 

  • Surian, N., Ziliani, L., Comiti, F., Lenzi, M. A., & Mao, L. (2009). Channel adjustments and alteration of sediment fluxes in gravel-bed rivers of North-Eastern Italy: Potentials and limitations for channel recovery. River Research and Applications, 25(5), 551–567.

    Article  Google Scholar 

  • Talukdar, S., & Pal, S. (2017). Impact of dam on inundation regime of flood plain wetland of Punarbhaba river basin of Barind Tract of Indo-Bangladesh. International Soil and Water Conservation Research. https://doi.org/10.1016/j.iswcr.2017.05.003.

    Article  Google Scholar 

  • TEEB. (2012). The economics of ecosystems and biodiversity in business and enterprise. Edited by Joshua Bishop. Earthscan, London and New York.

  • Umitsu, M. (1993). Late quaternary sedimentary environments and landforms in the Ganges Delta. Sedimentary Geology, 83(3–4), 177–186.

    Article  Google Scholar 

  • Walker, K. F., Sheldon, F., & Puckridge, J. T. (1995). A perspective on dryland river ecosystems. River Research and Applications, 11(1), 85–104.

    Google Scholar 

  • Ward, D. P., Hamilton, S. K., Jardine, T. D., Pettit, N. E., Tews, E. K., Olley, J. M., & Bunn, S. E. (2013). Assessing the seasonal dynamics of inundation, turbidity, and aquatic vegetation in the Australian wet–dry tropics using optical remote sensing. Ecohydrology, 6(2), 312–323. https://doi.org/10.1002/eco.1270.

    Article  Google Scholar 

  • Ward, J. (1998). Riverine landscapes: Biodiversity patterns, disturbance regimes, and aquatic conservation. Biological Conservation, 83(3), 269–278.

    Article  Google Scholar 

  • White, D. S. (1993). Perspectives on defining and delineating hyporheic zones. Journal of the North American Benthological Society, 12(1), 61–69.

    Article  Google Scholar 

  • Wu, G., & Liu, Y. (2014). Satellite-based detection of water surface variation in China’s largest freshwater lake in response to hydro-climatic drought. International Journal of Remote Sensing, 35(11–12), 4544–4558.

    Article  Google Scholar 

  • Xu, D., & Guo, X. (2014). Compare NDVI extracted from landsat 8 imagery with that from Landsat 7 imagery. American Journal of Remote Sensing, 2(2), 10–14. https://doi.org/10.11648/j.ajrs.20140202.11.

    Article  Google Scholar 

  • Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyajit Paul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Paul, S. Stability consistency and trend mapping of seasonally inundated wetlands in Moribund deltaic part of India. Environ Dev Sustain 23, 12925–12953 (2021). https://doi.org/10.1007/s10668-020-01193-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-01193-z

Keywords

Navigation