Skip to main content
Log in

Evaluating the Bacterial Diversity from the Southwest Coast of India Using Fatty Acid Methyl Ester Profiles

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The fatty acid composition of bacterial isolates remains stable under standardized culture conditions, which makes it a useful taxonomic marker. The present study aims to characterize the diversity and quantity of fatty acid methyl esters (FAME) profiles of cultivable bacterial isolates collected along the southwest coast of India. Based on the similarity indices (range > 0.3–0.7) of the FAME profiles, the isolates were aggregated into 10 families, 11 genera and 19 species of cultured isolates. The following classes of bacteria were found: Bacilli, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Actinobacteria, which also included a few pathogens such as Pseudomonas, Staphylococcus and Bacillus sp. The hydroxyl FAMEs 2-hydroxydodecanoic acid (C12:0 2OH), 2-hydroxypentadecanoic acid (C15:0 2OH),3-hydroxy 14-methylpentadecanoic acid (C16:0iso 3OH), 3 hydroxy hexadecenoic acid (C16:0 3OH) and 3-hydroxy 15-methylhexadecanoic acid (C17:0iso 3OH), as well as the unsaturated FAMEs (11Z)-11-hexadecenoic acid (C16:1 ɷ5c), were exclusively associated with the isolates from Mangalore samples. Similarly, FAMEs 2-hydroxydecanoic acid (C10:0 2OH), 9-methyldecanoic acid (C11:0iso), undecanoic acid (C11:0), tridecanoic acid (C13:0), 10-methylhexadecanoic acid (C16:0 10-CH3) and (7Z)-7-hexadecenoic acid (C16:1 ɷ9c) occurred only in the isolates from Trivandrum samples. However, the isolates from Goa did not possess a signature FAME profile. The reproducibility of the GC-MIDI bacterial identification system was evaluated using 16S rRNA gene sequencing techniques for selected isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Morey A, Oliveira ACM, Himelbloom BH (2013) Identification of seafood bacteria from cellular fatty acid analysis via the Sherlock® microbial identification system. J Biol Life Sci 4(2):139. https://doi.org/10.5296/jbls.v4i2.3272

    Article  Google Scholar 

  2. Da Costa MS, Albuquerque L, Nobre MF, Wait R (2011) The identification of fatty acids in bacteria. In: Methods in microbiology, vol 38. Elsevier, Amsterdam, pp 183–196

  3. White SW, Zheng J, Zhang Y-M, Rock CO (2005) The structural biology of type II fatty acid biosynthesis. Annu Rev Biochem 74:791–831

    CAS  PubMed  Google Scholar 

  4. Diomande SE, Guinebretière M-H, Broussolle V, Brillard J (2015) Role of fatty acids in Bacillus environmental adaptation. Front Microbiol 6:813

    PubMed  PubMed Central  Google Scholar 

  5. Bertone S, Giacomini M, Ruggiero C, Piccarolo C, Calegari L (1996) Automated systems for identification of heterotrophic marine bacteria on the basis of their Fatty Acid composition. Appl Environ Microbiol 62(6):2122–2132

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kunitsky C, Osterhout G, Sasser M (2006) Identification of microorganisms using fatty acid methyl ester (FAME) analysis and the MIDI Sherlock Microbial Identification System. Encycl Rapid Microbiol Methods 3:1–18

    Google Scholar 

  7. Tang B, Row KH (2013) Development of gas chromatography analysis of fatty acids in marine organisms. J Chromatogr Sci 51(7):599–607. https://doi.org/10.1093/chromsci/bmt005

    Article  CAS  PubMed  Google Scholar 

  8. Traul K, Driedger A, Ingle D, Nakhasi D (2000) Review of the toxicologic properties of medium-chain triglycerides. Food Chem Toxicol 38(1):79–98

    CAS  PubMed  Google Scholar 

  9. Dawyndt P, Vancanneyt M, Snauwaert C, De Baets B, De Meyer H, Swings J (2006) Mining fatty acid databases for detection of novel compounds in aerobic bacteria. J Microbiol Methods 66(3):410–433

    CAS  PubMed  Google Scholar 

  10. Kotilainen P, Huovinen P, Eerola E (1991) Application of gas-liquid chromatographic analysis of cellular fatty acids for species identification and typing of coagulase-negative Staphylococci. J Clin Microbiol 29(2):315–322

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Osterhout GJ, Shull VH, Dick JD (1991) Identification of clinical isolates of gram-negative nonfermentative bacteria by an automated cellular fatty acid identification system. J Clin Microbiol 29(9):1822–1830

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Inglis TJ, Aravena-Roman M, Ching S, Croft K, Wuthiekanun V, Mee BJ (2003) Cellular fatty acid profile distinguishes Burkholderia pseudomallei from avirulent Burkholderia thailandensis. J Clin Microbiol 41(10):4812–4814

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Van den Velde S, Lagrou K, Desmet K, Wauters G, Verhaegen J (2006) Species identification of corynebacteria by cellular fatty acid analysis. Diagn Microbiol Infect Dis 54(2):99–104

    PubMed  Google Scholar 

  14. Piñeiro-Vidal M, Pazos F, Santos Y (2008) Fatty acid analysis as a chemotaxonomic tool for taxonomic and epidemiological characterization of four fish pathogenic Tenacibaculum species. Lett Appl Microbiol 46(5):548–554

    PubMed  Google Scholar 

  15. Stead D, Sellwood J, Wilson J, Viney I (1992) Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 72(4):315–321

    Google Scholar 

  16. Steele M, McNab W, Read S, Poppe C, Harris L, Lammerding A, Odumeru J (1997) Analysis of whole-cell fatty acid profiles of verotoxigenic Escherichia coli and Salmonella enteritidis with the microbial identification system. Appl Environ Microbiol 63(2):757–760

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sohlenkamp C, Geiger O (2016) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40(1):133–159

    CAS  PubMed  Google Scholar 

  18. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. Technical note 101. MIDI Inc, Newark, DE

    Google Scholar 

  19. Haznedaroğlu BZ, Zitomer DH, Hughes-Strange GB, Duran M (2005) Whole-cell fatty acid composition of total coliforms to predict sources of fecal contamination. J Environ Eng 131(10):1426–1432

    Google Scholar 

  20. Miller CS, Handley KM, Wrighton KC, Frischkorn KR, Thomas BC, Banfield JF (2013) Short-read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments. PLoS ONE 8(2):e56018

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series. vol 41, no 41. [London]: Information Retrieval Ltd., c1979-c2000

  22. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    CAS  PubMed  Google Scholar 

  23. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    CAS  PubMed  Google Scholar 

  24. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Duran M, Haznedaroğlu BZ, Zitomer DH (2006) Microbial source tracking using host specific FAME profiles of fecal coliforms. Water Res 40(1):67–74

    CAS  PubMed  Google Scholar 

  27. Haack SK, Garchow H, Odelson DA, Forney LJ, Klug MJ (1994) Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl Environ Microbiol 60(7):2483–2493

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Attie O, Jayaprakash A, Shah H, Paulsen IT, Morino M, Takahashi Y, Narumi I, Sachidanandam R, Satoh K, Ito M (2014) Draft genome sequence of Bacillus alcalophilus AV1934, a classic alkaliphile isolated from human feces in 1934. Genome Announc 2(6):e01175-e11114

    PubMed  PubMed Central  Google Scholar 

  29. Ümit EG, Ümit HC, Kuloðlu F, Demir AM (2014) Multiple liver and muscle abscesses and sepsis with Bacillus pantothenticus in a Leukemia patient/Bir Lösemi Hastasinda Bacillus pantothenticus ile multipl Karaciger ve Kas Abseleri. Turk J Haematol 31(3):321

    PubMed Central  Google Scholar 

  30. Ponce-Alonso M, Del Campo R, Fortun J, Cantón R, Morosini M-I (2017) First description of late recurrence of catheter-associated bacteraemia due to Cellulosimicrobium cellulans. Enferm Infecc Microbiol Clin 35(2):131

    PubMed  Google Scholar 

  31. Frickmann H, Hahn A, Skusa R, Mund N, Viehweger V, Köller T, Köller K, Schwarz NG, Becker K, Warnke P (2018) Comparison of the etiological relevance of Staphylococcus haemolyticus and Staphylococcus hominis. Eur J Clin Microbiol Infect Dis 37(8):1539–1545

    PubMed  Google Scholar 

  32. Hong JS, Yoon E-J, Song W, Seo YB, Shin S, Park M-J, Jeong SH, Lee K (2018) Molecular characterization of Pseudomonas putida group isolates carrying bla VIM-2 disseminated in a university hospital in Korea. Microbial Drug Resist 24(5):627–634

    CAS  Google Scholar 

  33. Huse H, Miller S, Chandrasekaran S, Hindler J, Lawhon S, Bemis D, Westblade L, Humphries R (2018) Evaluation of oxacillin and cefoxitin disk diffusion and MIC breakpoints established by the clinical and laboratory standards institute for detection of mecA-mediated oxacillin resistance in Staphylococcus schleiferi. J Clin Microbiol 56(2):e01653-e11617

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ianiro G, Rizzatti G, Plomer M, Lopetuso L, Scaldaferri F, Franceschi F, Cammarota G, Gasbarrini A (2018) Bacillus clausii for the treatment of acute diarrhea in children: a systematic review and meta-analysis of randomized controlled trials. Nutrients 10(8):1074

    PubMed Central  Google Scholar 

  35. Imhof L, Schrading S, Braunschweig T, Steinau G, Spillner JW, Puzik A, Lassay L, Kontny U (2018) Abscessing infection by Streptococcus mitis mimicking metastatic lesions in a 5-year-old girl with nephroblastoma: a case report. J Pediatr Hematol Oncol 40(7):e429–e431

    PubMed  Google Scholar 

  36. Le KY, Park MD, Otto M (2018) Immune evasion mechanisms of Staphylococcus epidermidis biofilm infection. Front Microbiol 9:359

    PubMed  PubMed Central  Google Scholar 

  37. Sethi S, Haworth C, Davis A, Gonda I, Froehlich J, O'Donnell A (2018) Safety and tolerability of ARD-3150, inhaled liposomal ciprofloxacin, in patients with bronchiectasis and chronic pseudomonas aeruginosa infection: results from two phase 3 trials. In: D23. Adult cf and non-cf bronchiectasis. American Thoracic Society, pp A6280-A6280

  38. Stabler SN, Mack B, McCormack G, Cheng MP (2018) Brevundimonas vesicularis causing bilateral pneumosepsis in an immunocompetent adult: a case report and literature review. Can J Hosp Pharm 71(3):208–210

    PubMed  PubMed Central  Google Scholar 

  39. Tarr GA, Shringi S, Phipps AI, Besser TE, Mayer J, Oltean HN, Wakefield J, Tarr PI, Rabinowitz P (2018) Geogenomic segregation and temporal trends of human pathogenic Escherichia coli O157: H7, Washington, USA, 2005–2014. Emerg Infect Dis 24(1):32

    PubMed  PubMed Central  Google Scholar 

  40. Halabi Z, Mocadie M, El Zein S, Kanj SS (2019) Pseudomonas stutzeri prosthetic valve endocarditis: a case report and review of the literature. J Infect Public Health 12(3):434–437

    PubMed  Google Scholar 

  41. Pasquarelli F, Spera A, Cantarella L, Cantarella M (2015) Biodegradation of bromoxynil using the cascade enzymatic system nitrile hydratase/amidase from Microbacterium imperiale CBS 498–74. Comparison between free enzymes and resting cells. RSC Adv 5(46):36913–36923

    CAS  Google Scholar 

  42. Nielsen TK, Rasmussen M, Demanèche S, Cecillon S, Vogel TM, Hansen LH (2017) Evolution of sphingomonad gene clusters related to pesticide catabolism revealed by genome sequence and mobilomics of Sphingobium herbicidovorans MH. Genome Biol Evol 9(9):2477–2490

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Carreira C, Mestre O, Nunes RF, Moura I, Pauleta SR (2018) Genomic organization, gene expression and activity profile of Marinobacter hydrocarbonoclasticus denitrification enzymes. PeerJ 6:e5603

    PubMed  PubMed Central  Google Scholar 

  44. Kumar A, Saini HS, Kumar S (2018) Bioleaching of gold and silver from waste printed circuit boards by Pseudomonas balearica SAE1 isolated from an e-waste recycling facility. Curr Microbiol 75(2):194–201

    CAS  PubMed  Google Scholar 

  45. Roşca M, Hlihor R-M, Cozma P, Drăgoi EN, Diaconu M, Silva B, Tavares T, Gavrilescu M (2018) Comparison of Rhodotorula sp. and Bacillus megaterium in the removal of cadmium ions from liquid effluents. Green Process Synth 7(1):74–88

    Google Scholar 

  46. Sharmili A, Ramasamy P (2016) Fatty Acid Methyl Ester (FAME) analysis of moderately thermophilic bacteria isolated from the coramandal coast, Chennai, Tamilnadu. Eur J Exp Biol 6:1–7

    CAS  Google Scholar 

  47. Ramesh C, Mohanraju R, Narayana S, Murthy K, Karthick P (2017) Isolation and cellular fatty acid profile analyzation of two marine bioluminescent bacteria. Indian J Geo Mar Sci 46(01):192–195

    Google Scholar 

  48. VV S, Patil M, Dharmadhikari S (2012) FAME and 16srDNA sequence analysis of halophilic bacteria from solar salterns of Goa: a comparative study. Int J Sci Res Publ 2(8):1–8

    Google Scholar 

  49. Li C, Cano A, Acosta-Martinez V, Veum KS, Moore-Kucera J (2020) A comparison between fatty acid methyl ester profiling methods (PLFA and EL-FAME) as soil health indicators. Soil Sci Soc Am J 84(4):1153–1169

    CAS  Google Scholar 

  50. Dahal RH, Kim J (2019) Glaciihabitans arcticus sp. nov., a psychrotolerant bacterium isolated from Arctic soil. Int J Syst Evolut Microbiol 69(8):2492–2497

    CAS  Google Scholar 

  51. Singh VK, Mishra A, Jha B (2019) 3-Benzyl-hexahydro-pyrrolo [1, 2-a] pyrazine-1, 4-dione extracted from Exiguobacterium indicum showed anti-biofilm activity against Pseudomonas aeruginosa by attenuating quorum sensing. Front Microbiol 10:1269

    PubMed  PubMed Central  Google Scholar 

  52. Dahal RH, Chaudhary DK, Kim D-U, Kim J (2020) Luteolibacter luteus sp. nov., isolated from stream bank soil. Arch Microbiol 1–6

  53. Dione N, Lo CI, Raoult D, Fenollar F, Fournier P-E (2020) Clostridium massiliamazoniense sp. Nov., new bacterial species isolated from stool sample of a volunteer Brazilian. Curr Microbiol 77(9):2008–2015

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ippoliti P, Nargi F, Han J, Casale A, Walsh M, Boettcher T, Dettman J (2020) Highly accurate classification of biological spores by culture medium for forensic attribution using multiple chemical signature types and machine learning. Anal Bioanal Chem 1–13

  55. Dahal RH, Chaudhary DK, Kim D-U, Pandey RP, Kim J (2020) Chryseobacterium antibioticum sp. nov. with antimicrobial activity against Gram-negative bacteria, isolated from Arctic soil. J Antibiotics 1–9

  56. Fykse EM, Tjärnhage T, Humppi T, Eggen VS, Ingebretsen A, Skogan G, Olofsson G, Wästerby P, Gradmark P-Å, Larsson A (2015) Identification of airborne bacteria by 16S rDNA sequencing, MALDI-TOF MS and the MIDI microbial identification system. Aerobiologia 31(3):271–281

    PubMed  PubMed Central  Google Scholar 

  57. Balser TC, Liang C, Gutknecht JL (2019) Linking microbial community analysis and ecosystem studies: a rapid lipid analysis protocol for high throughput. Soil Ecol Lett 1(1–2):22–32

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, CSIR-NIO for providing the facilities necessary to carry out this study. The authors are also thankful to the chief scientist and the crew aboard of SSK113 cruise for their sampling assistance. The authors also thank Dr. Anas Abdulaziz, CSIR-NIO RC, Kochi for the support and GC MIDI training. The computer facilities were performed using research computing facilities under GAP 0423: Biotechnology Information systems project offered by Department of Biotechnology, Govt. of India. The GC-MIDI facilities were utilized and the authors are grateful to the Central Analytical Facility of CSIR-NIO for the same.

Funding

Funding was provided by National Institute of Oceanography, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dineshram Ramadoss.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaacs, M.J., Ramadoss, D., Parab, A.S. et al. Evaluating the Bacterial Diversity from the Southwest Coast of India Using Fatty Acid Methyl Ester Profiles. Curr Microbiol 78, 649–658 (2021). https://doi.org/10.1007/s00284-020-02315-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02315-6

Navigation