Skip to main content
Log in

Modification of a Projection Method for Analysis of Radiation of a Radial Dipole in the Presence of an Inhomogeneous Body of Revolution

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The problem of radiation of a radial electric dipole located on the axis of rotation of an axisymmetric body consisting of a homogeneous dielectric sphere and an external inhomogeneous dielectric layer is considered. The new numerical algorithm developed to solve the problem is based on a projection method that includes the projection of fields to transverse spherical harmonics in combination with a one-dimensional finite element method in a projection form along the radial coordinate. The algorithm is also generalized to the case in which the inner sphere is perfectly conducting. Numerical results, which characterize both the efficiency of the method and the effect of various parameters of the body on the directional pattern of the dipole, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. G. Sveshnikov, “Diffraction on a bounded body,” Dokl. Akad. Nauk SSSR 184 (1), 63–65 (1969).

    Google Scholar 

  2. A. G. Sveshnikov and A. S. Il’inskii, “A direct method for problems of diffraction by a locally inhomogeneous body,” USSR Comput. Math. Math. Phys. 11 (4), 180–189 (1971).

    Article  Google Scholar 

  3. A. G. Sveshnikov and Yu. A. Eremin, “The projection method in exterior diffraction problems,” Dokl. Akad. Nauk SSSR 221 (1), 84–86 (1975).

    MathSciNet  Google Scholar 

  4. A. G. Sveshnikov and Yu. A. Eremin, “The projection method for analysis of exterior diffraction problems taking into account scatterer geometry,” Computational Methods and Programming (Mosk. Gos. Univ., Moscow, 1978), Vol. 28, pp. 14–23 [in Russia].

    Google Scholar 

  5. V. F. Apel’tsin, “Justification of the projection method for solving axisymmetric problems of diffraction by locally inhomogeneous bodies,” USSR Comput. Math. Math. Phys. 19 (5), 102–119 (1979).

    Article  Google Scholar 

  6. V. F. Apel’tsin, A. S. Il’inskii, and B. R. Sabitov, “Fundamentals of a modified partial projection method for problems of scattering from hydrometeors,” USSR Comput. Math. Math. Phys. 26 (5), 169–181 (1986).

    Article  Google Scholar 

  7. A. S. Il’inskii, V. V. Kravtsov, and A. G. Sveshnikov, Mathematical Models of Electrodynamics (Vysshaya Shkola, Moscow, 1991) [in Russian].

    Google Scholar 

  8. B. Stout, M. Neviere, and E. Popov, “Light diffraction by a three-dimensional object: Differential theory,” J. Opt. Soc. Am. A 22 (11), 2385–2404 (2005).

    Article  MathSciNet  Google Scholar 

  9. V. V. Nikol’skii, “Projection method for nonclosed electrodynamic systems,” Radiotekh. Elektron. 16 (8), 1342–1351 (1971).

    MathSciNet  Google Scholar 

  10. G. D. Malushkov, “Scattering by an inhomogeneous dielectric body of revolution,” Radiophys. Quantum Electron. 18, 196–203 (1975).

    Article  Google Scholar 

  11. M. A. Morgan and K. K. Mei, “Finite-element computation of scattering by inhomogeneous penetrable bodies of revolution,” IEEE Trans. Antennas Propag. 27 (2), 202–214 (1979).

    Article  Google Scholar 

  12. A. D. Greenwood and J.-M. Jin, “Finite-element analysis of complex axisymmetric radiating structures,” IEEE Trans. Antennas Propag. 47 (8), 1260–1266 (1999).

    Article  Google Scholar 

  13. E. N. Vasil’ev and L. B. Materikova, “Excitation of a multilayer dielectric body of rotation having an arbitrary shape,” Radiophys. Quantum Electron. 16, 72–81 (1973).

    Article  Google Scholar 

  14. A. G. Kyurkchan and S. A. Manenkov, “Application of modified method of discrete sources for solving a problem of wave diffraction on a multilayered body of revolution,” J. Quant. Spectrosc. Radiat. Transfer 146, 295–303 (2014).

    Article  Google Scholar 

  15. A. A. Kucharski, “A method of moments solution for electromagnetic scattering by inhomogeneous dielectric bodies of revolution,” IEEE Trans. Antennas Propag. 48 (8), 1202–1210 (2000).

    Article  MathSciNet  Google Scholar 

  16. S. A. Manenkov, “The problem of electromagnetic field diffraction by an axisymmetric inhomogeneous body,” J. Commun. Technol. Electron. 63 (1), 1–10 (2018).

    Article  Google Scholar 

  17. A. A. Shcherbakov, “Calculation of the electromagnetic scattering by nonspherical particles based on the volume integral equation in the spherical wave function basis,” J. Quant. Spectrosc. Radiat. Transfer 231, 102–114 (2019).

    Article  Google Scholar 

  18. S. P. Skobelev and A. A. Yaparova, “A hybrid projection method for analysis of waveguide arrays with protruding dielectric elements: 2D problems,” J. Commun. Technol. Electron. 52 (3), 293–303 (2007).

    Article  Google Scholar 

  19. S. P. Skobelev, Phased Array Antennas with Sectorial Partial Radiation Patterns (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  20. S. P. Skobelev and O. N. Smol’nikova, “Analysis of 1D periodic dielectric structures using a hybrid projection method,” J. Commun. Technol. Electron. 57 (10), 1073–1083 (2012).

    Article  Google Scholar 

  21. S. P. Skobelev and O. N. Smolnikova, “Analysis of doubly periodic inhomogeneous dielectric structures by a hybrid projective method,” IEEE Trans. Antennas Propag. 61 (10), 5078–5087 (2013).

    Article  MathSciNet  Google Scholar 

  22. S. P. Skobelev and O. N. Smol’nikova, “Analysis and optimization of matching two-dimensionally periodic dielectric structures with cone-shaped cavities,” J. Commun. Technol. Electron. 60 (11), 1215–1221 (2015).

    Article  Google Scholar 

  23. O. N. Smol’nikova, N. A. Fedotova, and S. P. Skobelev, “Analysis of longitudinally nonuniform dielectric transition in a circular waveguide: 1. Hybrid projection method,” Radiotekhnika, No. 4, 84–90 (2015).

    Google Scholar 

  24. O. N. Smol’nikova, N. A. Fedotova, and S. P. Skobelev, “Analysis of longitudinally nonuniform dielectric transition in a circular waveguide: 2. Axisymmetric excitation and numerical results,” Radiotekhnika, No. 10, 35–42 (2015).

    Google Scholar 

  25. O. N. Smol’nikova, N. A. Fedotova, and S. P. Skobelev, “Analysis of longitudinally nonuniform dielectric transition in a circular waveguide: 3. Numerical results for TE11 mode excitation,” Radiotekhnika, No. 10, 64–69 (2016).

    Google Scholar 

  26. E. S. Nekrasova and S. P. Skobelev, “Modification of the hybrid projection method for electrodynamic analysis of an inhomogeneous dielectric cylinder of arbitrary cross section,” Radiotekhnika, No. 10, 35–43 (2017).

    Google Scholar 

  27. E. S. Nekrasova, O. N. Smol’nikova, and S. P. Skobelev, “Scattering of H-polarized plane wave by an inhomogeneous dielectric cylinder of arbitrary cross section 1,” Radiotekhnika, No. 4, 17–22 (2018).

    Google Scholar 

  28. E. S. Nekrasova, O. N. Smol’nikova, and S. P. Skobelev, “Scattering of H-polarized plane wave by an inhomogeneous dielectric cylinder of arbitrary cross section 2,” Radiotekhnika, No. 10, 42–53 (2018).

    Google Scholar 

  29. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas, 2nd ed. (Nauka, Moscow, 1967; Pergamon, Oxford, 1970).

  30. A. G. Kyurkchan, S. A. Manenkov, and E. S. Negorozhina, “Analysis of electromagnetic field diffraction by bodies of revolution with the use of the modified method of discrete sources,” J. Commun. Technol. Electron. 51 (11), 1209–1217 (2006).

    Article  Google Scholar 

  31. A. V. Korobkina and S. P. Skobelev, “Intercomparison of modifications of the auxiliary source method,” Radiotekhnika, No. 4, 60–65 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Skobelev.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semernya, E.I., Skobelev, S.P. Modification of a Projection Method for Analysis of Radiation of a Radial Dipole in the Presence of an Inhomogeneous Body of Revolution. Comput. Math. and Math. Phys. 60, 2064–2075 (2020). https://doi.org/10.1134/S096554252012012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554252012012X

Keywords:

Navigation