Skip to main content

Advertisement

Log in

Copper-Promoted Cobalt/Titania Nanorod Catalyst for CO Hydrogenation to Hydrocarbons

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effect of Cu on cobalt/titania nanorod (Co/TNR) catalysts for the promotion of carbon monoxide (CO) hydrogenation to hydrocarbons was investigated. Varying amounts of Cu (1.5–6.0 wt%) were loaded onto the base Co/TNR catalyst using the deposition–precipitation method. Characterization by X-ray diffraction (XRD) revealed that the Cu particles were well dispersed over the Co/TNR catalysts. Characterizations by temperature-programmed desorption of hydrogen (H2-TPD) and carbon monoxide (CO-TPD) and temperature-programmed reduction in hydrogen (H2-TPR) proved the effect of the Cu promoter in the Co/TNR catalyst by its bimetal effect with Co, where the Co/TNR catalysts containing Cu generally showed a significant improvement in comparison with the base Co/TNR catalyst not containing the Cu promoter. The CO and H2 adsorption capacities and reducibility were optimal on the catalyst containing 1.5% Cu (1.5Cu-Co/TNR). This aligns well with the catalytic activity performance of all the catalysts, where the 1.5Cu-Co/TNR catalyst exhibited the best performance, yielding 16.8% CO conversion and 57.7% C5+ hydrocarbon selectivity at 240 ℃ and 5 bar.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692–1744

    Article  CAS  PubMed  Google Scholar 

  2. Jahangiri H, Bennet J, Mahjoubi P, Wilson K, Gu S (2014) Catal Sci Technol 4:2210–2229

    Article  CAS  Google Scholar 

  3. Gholami Z, Tisler Z, Rubas V (2020). Catal Rev. https://doi.org/10.1080/01614940.2020.1762367

    Article  Google Scholar 

  4. Yang J, Ma W, Chen D, Holmen A, Davis BH (2014) Appl Catal A: Gen 470:250–260

    Article  CAS  Google Scholar 

  5. Savost’yanov AP, Eliseev OL, Yakovenko RE, Narochniy GB, Maslakov KI, Zubkov I, Soromotin VN, Kozakov AT, Nicolskii AV, Mitchenko SA (2020) Deactivation of Co-Al2O3/SiO2 Fischer Trospch Synthesis Catalyst in Industrially Relevant Conditions. Catal Lett 150:1932–1941

    Article  CAS  Google Scholar 

  6. Gholami Z, Zabidi NAM, Gholami F, Ayodele OB, Vakili M (2017) Rev Chem Eng 33:337–358

    Article  CAS  Google Scholar 

  7. van Steen E, Claeys M (2008) Chem Eng Technol 31:655–666

    Article  CAS  Google Scholar 

  8. Madon RJ, Seaw H (1977) Catal Rev 15:69–106

    Article  CAS  Google Scholar 

  9. Iglesia E (1997) Appl Catal A-Gen 161:59–78

    Article  CAS  Google Scholar 

  10. Di Z, Feng X, Yang Z, Luo M (2020). Catal Lett. https://doi.org/10.1007/s10562-020-03158-3

    Article  Google Scholar 

  11. Chou W, Wu P, Luo M, Li W, Li S (2020) Catal Lett 150:1993–2002

    Article  CAS  Google Scholar 

  12. Yang Z, Luo M, Liu Q, Shi B (2020). Catal Lett. https://doi.org/10.1007/s10562-020-03147-6

    Article  Google Scholar 

  13. Marion MC, Hugues F (2007) Stud Surf Sci Catal 167:91–96

    Article  CAS  Google Scholar 

  14. Luque R, de la Osa AR, Campelo JM, Romero AA, Valverde JL, Sanchez P (2012) Energy Environ Sci 5:5186–5202

    Article  CAS  Google Scholar 

  15. Haryanto A, Fernando SD, Pordesimo LO, Adhikari S (2009) Biomass Bioenergy 33:882–889

    Article  CAS  Google Scholar 

  16. Lualdi M, Logdberg S, Regali F, Boutonnet M, Jaras S (2011) Top Catal 54:977–985

    Article  CAS  Google Scholar 

  17. Davis BH (2007) Ind Eng Chem Res 46:8938–8945

    Article  CAS  Google Scholar 

  18. Rofer-DePoorter CK (1981) Chem Rev 5:447–474

    Article  Google Scholar 

  19. Tsakoumis NE, Ronning M, Borg O, Rytter E, Holmen A (2010) Catal Today 154:162–182

    Article  CAS  Google Scholar 

  20. Bartholomew CH (2001) Appl Catal A: Gen 212:17–60

    Article  CAS  Google Scholar 

  21. Morales F, Weckhuysen BM (2006) Catalysis 19:1

    CAS  Google Scholar 

  22. Ma WP, Kugler EL, Dadyburjor DB (2011) Energy Fuel 25:1931–1938

    Article  CAS  Google Scholar 

  23. Jacobs G, Ribeiro MC, Ma WP, Ji YY, Khalid S, Sumodjo PTA, Davis BH (2009) Appl Catal A-Gen 361:137–151

    Article  CAS  Google Scholar 

  24. Chen XB, Cao S, Weng XL, Wang HQ, Wu ZB (2012) Effects of morphology and structure of titanate supports on the performance of ceria in selective catalytic reduction of NO. Catal Commun 26:178–182

    Article  CAS  Google Scholar 

  25. Song FJ, Zhao YX, Zhong Q (2013) Adsorption of carbon dioxide on amine-modified TiO2 nanotubes. J Environ Sci 25:554–560

    Article  CAS  Google Scholar 

  26. Kim M, Hwang SH, Lim SK, Kim S (2012) Effects of ion exchange and calcinations on the structure and photocatalytic activity of hydrothermally prepared titanate nanotubes. Cryst Res Technol 47:1190–1194

    Article  CAS  Google Scholar 

  27. Khan WU, Chen SS, Tsang DCW, Teoh WY, Hu X, Frank LYL, Yip ACK (2020) Nano Res 13:533–542

    Article  CAS  Google Scholar 

  28. Yu XF, Wu NZ, Xie YC, Tang YQ (2000) J Mater Chem 10:1629–1634

    Article  CAS  Google Scholar 

  29. Guo XZ, Huang J, Wang SR, Wang YM, Zhang BL, Wu SH (2009) J Disper Sci Technol 30:1114–1119

    Article  CAS  Google Scholar 

  30. Tang XL, Zhang BC, Li Y, Xu YD, Xin Q, Shen WJ (2004) Catal Today 93–5:191–198

    Article  CAS  Google Scholar 

  31. Mo XH, Tsai YT, Gao J, Mao DS, Goodwin JG (2012) J Catal 285:208–215

    Article  CAS  Google Scholar 

  32. Baharudin L, Severinsen I, Yip ACK, Golovko VB, Watson MJ (2020) Chem Eng J 389:124399

    Article  CAS  Google Scholar 

  33. Ernst B, Bensaddik A, Hilaire L, Chaumette P, Kiennemann A (1998) Catal Today 39:329–341

    Article  CAS  Google Scholar 

  34. Arnoldy P, Moulijn JA (1985) J Catal 93:38–54

    Article  CAS  Google Scholar 

  35. Sexton BA, Hughes AE, Turney TW (1986) J Catal 97:390–406

    Article  CAS  Google Scholar 

  36. Chen W, Zijlstra B, Filot IAW, Pestman R, Hensen EJM (2018) ChemCatChem 10:136–140

    Article  CAS  PubMed  Google Scholar 

  37. Tsyganenko AA, Mardilovich PP (1996) J Chem Soc Faraday Trans 92:4843–4852

    Article  CAS  Google Scholar 

  38. Gopalakrishnan R, Viswanathan B (1984) J Colloid Interface Sci 102:370–372

    Article  CAS  Google Scholar 

  39. Gopalakrishnan R, Viswanathan B (1984) Surf Technol 23:173–177

    Article  CAS  Google Scholar 

  40. Sitthisa S, Resasco DE (2011) Catal Lett 141:784–791

    Article  CAS  Google Scholar 

  41. Reddy BM, Reddy GK, Rao KN, Khan A, Ganesh I (2007) J Mol Catal A-Chem 265:276–282

    Article  CAS  Google Scholar 

  42. Maity S, James OO, Chowdhury B, Auroux A (2014) Curr Sci India 106:1538–1547

    CAS  Google Scholar 

  43. Tian X, Wang T, Yang Y, Li YW, Wang J, Jiao H (2017) Appl Catal A-Gen 530:83–92

    Article  CAS  Google Scholar 

  44. Keyser MJ, Everson RC, Espinoza RL (1998) Appl Catal A-Gen 171:99–107

    Article  CAS  Google Scholar 

  45. Dry ME (2002) Catal Today 71:227–241

    Article  CAS  Google Scholar 

  46. Shi Z, Yang H, Gao P, Chen X, Liu H, Zhong L, Wang H, Wei W, Sun Y (2018) Chinese J Catal 39:1294–1302

    Article  CAS  Google Scholar 

  47. Li Z, Wu J, Wu L (2017) React Kinet Mech Catal 122:887–900

    Article  CAS  Google Scholar 

  48. Xie J, Paalanen PP, van Deelen TW, Weckhuysen BM, Louwerse MJ, de Jong KP (2019) Nat Commun 10:167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Park JY, Lee YJ, Karandikar PR, Jun KW, Bae JW, Ha KS (2011) J Mol Catal A: Chem 344:153–160

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support from the Ministry of Business, Innovation & Employment in New Zealand under the MBIE Endeavour “Smart Ideas” grant (UOCX1905) and the China Scholarship Council (CSC). This work was also supported by the publication scholarship offered by the College of Engineering at the University of Canterbury.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex C. K. Yip.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, W.U., Li, X., Baharudin, L. et al. Copper-Promoted Cobalt/Titania Nanorod Catalyst for CO Hydrogenation to Hydrocarbons. Catal Lett 151, 2492–2501 (2021). https://doi.org/10.1007/s10562-020-03506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03506-3

Keywords

Navigation