Skip to main content

Advertisement

Log in

Effect of Senecio scandens ethanol extract on gut microbiota composition in mice

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The gut microbiota inhabits the animal intestinal tract, and dysbiosis of the gut microbiota may result in disease. Senecio scandens has pharmaceutical antibacterial activities and is regarded as a broad-spectrum antibiotic in traditional Chinese medicine. Extracts of S. scandens are reported to show strong antimicrobial activity, and quercetin significantly decreases some species in the caecal microflora. However, the bactericidal effects of the extracts on the gut microbiota remain obscure. Here, we supplied ethanol extract of S. scandens, which might possibly be used as an alternative for chemical antibiotics, to mice to investigate the state of the intestinal microbiota. Our studies included a control group, low-, moderate-, and high-dose ethanol extract groups, and cefixime capsule group. The ethanol extract groups did not present reduced diversity or differences in the gut microbiota balance. There were significant differences between the ethanol extract and cefixime capsule groups in terms of the gut microbiota. The control and ethanol extract groups contained similar bacteria, which suggested that the ethanol extract has no inhibitory effect on the gut microbiota in vivo. Bifidobacteriales and Lactobacillus acidophilus were significantly increased in the high-dose group. Both secretory immunoglobulin A and mucin 2 concentrations increased as the dose of ethanol extract increased. The functional prediction differences between the control and ethanol extract groups decreased with increasing extract doses, which indicated that the low-dose and high-dose extract treatments might regulate different pathways and functions of the gut microbiota. The results also highlighted the prevention of bacterial drug resistance in the ethanol extract groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alfa MJ, Strang D, Tappia PS et al (2018) A randomized trial to determine the impact of a digestion resistant starch composition on the gut microbiome in older and mid-age adults. Clin Nutr 37:797–807

    Article  CAS  PubMed  Google Scholar 

  • Anonymity (2010) Pharmacopoeia of the People’s Republic of China. vol 1. China Medical Science Press, Beijing

  • Bao L, Kong M (2011) Observation on the efficacy of combined treatment of Chinese and western medicine in active ulcerative colitis. J Wannan Med Coll 30:480–482

    Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boltin D, Perets T, Vilkin A et al (2013) Mucin function in inflammatory bowel disease: an update. J Clin Gastroenterol 47:106–111. https://doi.org/10.1097/MCG.0b013e3182688e73

    Article  CAS  PubMed  Google Scholar 

  • Boslaugh S (2012) Statistics in a nutshell, 2nd edn. O’Reilly & Associates Inc, USA

    Google Scholar 

  • Cantarel BL, Waubant E, Chehoud C et al (2015) Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J Investig Med 63:729–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Yao G, Sheng Y et al (2019) JinQi Jiangtang tablet regulates gut microbiota and improve insulin sensitivity in type 2 diabetes mice. J Diabetes Res 2019:1–12. https://doi.org/10.1155/2019/1872134

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carding SR, Verbeke K, Vipond DT et al (2015) Dysbiosis of the gut microbiota in disease. Microbial Ecol Health Dis 26:26191–26191

    Google Scholar 

  • Chen J, Wang J, Geng G (1999) The chemical compositions and antibacterial effects of Senecio Scandens Buch. -Ham. Progr Vet Med 20:35–37

    Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dou C, Bao Z, Han M et al (2017) Anti-tumor activity of polysaccharides extracted from Senecio scandens Buch, -Ham root on hepatocellular carcinoma. Trop J Pharm Res 16:43–49

    Article  CAS  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  • Helvaci M, Bektaşlar D, Ozkaya B et al (1998) Comparative efficacy of cefixime and ampicillin-sulbactam in shigellosis in children. Acta Paediatrica Jpn Overseas Edn 40:131–134. https://doi.org/10.1111/j.1442-200x.1998.tb01896.x

    Article  CAS  Google Scholar 

  • Hu L (1998) Eleven skin disease cases treatment by Qianliguang. Chin J Tradit Med Sci Technol 5:310

    Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Unno T, Kim B et al (2019) Sex differences in gut microbiota. World J Men’s Health 38:48–60

    Article  Google Scholar 

  • Kovacs A, Ben-Jacob N, Tayem H et al (2011) Genotype is a stronger determinant than sex of the mouse gut microbiota. Microb Ecol 61:423–428. https://doi.org/10.1007/s00248-010-9787-2

    Article  PubMed  Google Scholar 

  • Kusumo P, Bela B, Wibowo H et al (2019) Lactobacillus plantarum IS-10506 supplementation increases faecal sIgA and immune response in children younger than two years. Benef Microbes 10:245–252

    Article  CAS  PubMed  Google Scholar 

  • Lange K, Buerger M, Stallmach A et al (2016) Effects of antibiotics on gut microbiota. Dig Dis 34:260–268

    Article  PubMed  Google Scholar 

  • Langeveld WT, Veldhuizen EJ, Burt SA (2014) Synergy between essential oil components and antibiotics: a review. Crit Rev Microbiol 40:76–94

    Article  CAS  PubMed  Google Scholar 

  • Langille MG, Zaneveld J, Caporaso JG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lay C, Rigottier-Gois L, Holmstrøm K et al (2005) Colonic microbiota signatures across five northern European countries. Appl Environ Microbiol 71:4153–4155. https://doi.org/10.1128/aem.71.7.4153-4155.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HY, Lin TY, Wu CT et al (2010) Oral Cefixime is beneficial in acute uncomplicated Salmonella gastroenteritis in children with mucoid or bloody diarrhea—do indications of antibiotics therapy need reassessment? Intern J Infect Dis 14:E196–E197

    Article  Google Scholar 

  • Leiva-Gea I, Sánchez-Alcoholado L, Martín-Tejedor B et al (2018) Gut microbiota differs in composition and functionality between children with type 1 diabetes and MODY2 and healthy control subjects: a case–control study. Diabetes Care 41:2385–2395

    Article  CAS  PubMed  Google Scholar 

  • Li H, Nie F, Chen J et al (2008) Analysis on the chemical compositions of antibacterial extract from senecio scandens Buch - Ham and tests on its acute toxicity. J Tradit Chin Vet Med 27:7–9

    CAS  Google Scholar 

  • Li Y, Huang Q, Du Q et al (2010) Effect of Kuijieling decoction on dynamic changes of ITF, MUC2 and TGF-α in colonic mucosa of ulcerative colitis rat. Pharmacol Clin Chin Mater Med 26:68–70

    Google Scholar 

  • Li X, Ma C, Deng H (2018) Study on the optimization of extraction technology of total flavonoids by response surface method. Shaanxi J Agricult Sci 64:61–65

    CAS  Google Scholar 

  • Li Y, Jin L, Chen T (2020) The effects of secretory IgA in the mucosal immune system. Biomed Res Int 2020:1–6. https://doi.org/10.1155/2020/2032057

    Article  CAS  Google Scholar 

  • Lin Y, Ye Y (2003) Quality standard of traditional Chinese medicine and ethnic medicine in Guizhou province. Guizhou Science and Technology Press, Guiyang

    Google Scholar 

  • Liu S, Peng S, Min D (2007) Study on the bacteriostatic effect of 18 kinds of anti-inflammatory herbs. Mod Tradit Chin Med 27:41–43

    Google Scholar 

  • Liu Y, Yu X, Zhao J et al (2020) The role of MUC2 mucin in intestinal homeostasis and the impact of dietary components on MUC2 expression. Int J Biol Macromol 164:884–891. https://doi.org/10.1016/j.ijbiomac.2020.07.191

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Yue J, Lin H et al (2014) Effect of ultra-fine powder of Senecio scandens on diarrhea and serum IgG, IgA, IgM in piglet. Guangdong Agricult Sci 50:163–166

    Google Scholar 

  • Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin MJ, Thottathil SE, Newman TB (2015) Antibiotics overuse in animal agriculture: a call to action for health care providers. Am J Public Health 105:2409–2410

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuoka K, Kanai T (2015) The gut microbiota and inflammatory bowel disease. Seminars in immunopathology, vol 1. Springer, Berlin, pp 47–55

    Google Scholar 

  • Mattar A, Teitelbaum DH, Drongowski R et al (2002) Probiotics up-regulate MUC-2 mucin gene expression in a Caco-2 cell-culture model. Pediatr Surg Int 18:586–590

    Article  CAS  PubMed  Google Scholar 

  • Meng F, Zhang X, Xie W (2010) Research progress of the herbs of Senecio scandens. J Northeast Agricult Univ 9:156–160

    Google Scholar 

  • Mohammed T, Tawab H, El-Moktader A et al (2018) Efficacy and safety of oral cefixime for the short-term treatment of typhoid fever in a group of egyptian children. Der Pharmacia Lettre 10:11–23

    CAS  Google Scholar 

  • Myers SP (2004) The causes of intestinal dysbiosis: a review. Altern Med Rev 9:180–197

    PubMed  Google Scholar 

  • Naveed M, Hejazi V, Abbas M et al (2018) Chlorogenic acid (CGA): a pharmacological review and call for further research. Biomed Pharmacother 97:67–74. https://doi.org/10.1016/j.biopha.2017.10.064

    Article  CAS  PubMed  Google Scholar 

  • Nyangahu DD, Lennard KS, Brown BP et al (2018) Disruption of maternal gut microbiota during gestation alters offspring microbiota and immunity. Microbiome 6:124

    Article  PubMed  PubMed Central  Google Scholar 

  • Pabst O (2012) New concepts in the generation and functions of IgA. Nat Rev Immunol 12:821–832. https://doi.org/10.1038/nri3322

    Article  CAS  PubMed  Google Scholar 

  • Parks DH, Tyson GW, Hugenholtz P et al (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen C, Round JL (2014) Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol 16:1024–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham TTH, Rossi P, Dinh HDK et al (2018) Analysis of antibiotic multi-resistant bacteria and resistance genes in the effluent of an intensive shrimp farm (Long An, Vietnam). J Environ Manage 214:149–156

    Article  CAS  PubMed  Google Scholar 

  • Rao H, Zhou M, Qin S et al (2013) Determination of the content of total alkaloids in different solvent extracts from climbing groundsel herb produced in Guizhou province and their antibacterial activity. Agricult Sci Technol 13:1417–1420

    Google Scholar 

  • Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661

    Article  CAS  PubMed  Google Scholar 

  • Ren D, Li C, Qin Y et al (2015) Evaluation of immunomodulatory activity of two potential probiotic Lactobacillus strains by in vivo tests. Anaerobe 35:22–27

    Article  PubMed  Google Scholar 

  • Segata N, Izard J, Waldron L et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60

    Article  PubMed  PubMed Central  Google Scholar 

  • Subramani D, Johansson M, Dahlen G et al (2010) Lactobacillus and Bifidobacterium species do not secrete protease that cleaves the MUC2 mucin which organises the colon mucus. Benef Microbes 1:343–350

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Chen L, Liu Q et al (2019) Effects of dietary Senecio scandens buch-ham extracts on growth performance, plasma biochemical, histology and the expression of immune-related genes in hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). Fish Shellfish Immunol 98:681–690. https://doi.org/10.1016/j.fsi.2019.11.002

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Zhang X, Zhang Y et al (2019a) Antibiotic-induced disruption of gut microbiota alters local metabolomes and immune responses. Front Cell Infect Microbiol 9:99. https://doi.org/10.3389/fcimb.2019.00099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Lugt B, Rusli F, Lute C et al (2018) Integrative analysis of gut microbiota composition, host colonic gene expression and intraluminal metabolites in aging C57BL/6J mice. Aging (Albany NY) 10:930–950

    Article  Google Scholar 

  • Wang D, Huang L, Chen S (2013) Senecio scandens Buch.-Ham.: a review on its ethnopharmacology, phytochemistry, pharmacology, and toxicity. J Ethnopharmacol 149:1–23

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Yao J, Zhou B et al (2018) Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. J Food Prot 81:68–78. https://doi.org/10.4315/0362-028x.Jfp-17-214

    Article  CAS  PubMed  Google Scholar 

  • Weber D, Jenq RR, Peled JU et al (2017) Microbiota disruption induced by early use of broad-spectrum antibiotics is an independent risk factor of outcome after allogeneic stem cell transplantation. Biol Blood Marrow Transplant 23:845–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams P, Berkley J (2018) Guidelines for the treatment of dysentery (shigellosis): a systematic review of the evidence. Paediatr Intern Child Health 38:S50–S65. https://doi.org/10.1080/20469047.2017.1409454

    Article  Google Scholar 

  • Xiao L, Gong C, Ding Y et al (2019) Probiotics maintain intestinal secretory immunoglobulin A levels in healthy formula-fed infants: a randomised, double-blind, placebo-controlled study. Benef Microbes 10:729–739

    Article  CAS  PubMed  Google Scholar 

  • Xu Y (2013) Experimental study on the effect of Chinese-date on the immune molecule sIgA in respiratory tract membrane. Guide China Med 11:96–97

    Google Scholar 

  • Yang H, Liu A, Zhang M et al (2009) Oral administration of live Bifidobacterium substrains isolated from centenarians enhances intestinal function in mice. Curr Microbiol 59:439–445

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Yu T, Zeng L (2010) Experimental study on anti-Staphylococcus aureus via Chinese traditional medicine senecio. West China Med J 25:1860–1861

    Google Scholar 

  • Yao C, Wang J, Wang Y (2016) The anti-inflammatory and analgesic effects of Senecio scandens Buch-Ham. ethanol extracts (SSBHE). Biomed Res Tokyo 27:1033–1037

    Google Scholar 

  • Yao G, Wu S, Zeng X et al (2019) Different gut microbiome composition in obese Guizhou minipigs between female and castrated male. Folia Microbiol 64:889–898

    Article  CAS  Google Scholar 

  • Zaura E, Brandt BW, de Mattos MJT et al (2015) Same exposure but two radically different responses to antibiotics: resilience of the salivary microbiome versus long-term microbial shifts in feces. MBio 6:e01693-e11615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Cheng C, Han Q et al (2019) Flos Abelmoschus manihot extract attenuates DSS-induced colitis by regulating gut microbiota and Th17/Treg balance. Biomed Pharmacother 117:109162

    Article  CAS  PubMed  Google Scholar 

  • Zuo T, Lv Y, Cao L et al (2012) Promotion effect of Cucumaria frondosa on the secretion of mice intestinal SIgA. Sci Technol Food Industr 33:373–375

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Zhiwei Wang for the identification of Senecio scandens. We thank everyone who contributed to our studies, and we appreciate Shanghai BioTree Bio-Technology Co., Ltd. for their efforts in sequencing and data analysis. The study was funded by the Administration of Traditional Chinese Medicine of Guizhou Province (QZYY2017-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Yao.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1003 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, G., Zhang, H., Luo, G. et al. Effect of Senecio scandens ethanol extract on gut microbiota composition in mice. Arch Microbiol 203, 1477–1488 (2021). https://doi.org/10.1007/s00203-020-02144-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-02144-y

Keywords

Navigation