Skip to main content
Log in

Large KAM Tori for Quasi-linear Perturbations of KdV

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper we prove the persistence of space periodic multi-solitons of arbitrary size under any quasi-linear Hamiltonian perturbation, which is smooth and sufficiently small. This answers positively a longstanding question of whether KAM techniques can be further developed to prove the existence of quasi-periodic solutions of arbitrary size of strongly nonlinear perturbations of integrable PDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. Baldi, P., Berti, M., Haus, E., Montalto, R.: Time quasi-periodic gravity water waves in finite depth. Invent. Math. 214(2), 739–911, 2018

    Article  ADS  MathSciNet  Google Scholar 

  2. Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Math. Ann. 359, 471–536, 2014

    Article  MathSciNet  Google Scholar 

  3. Baldi, P., Berti, M., Montalto, R.: KAM for autonomous quasi-linear perturbations of KdV. Ann. Inst. H. Poincaré Analyse Non Lin. 33(6), 1589–1638, 2016

    Article  ADS  MathSciNet  Google Scholar 

  4. Baldi, P., Berti, M., Montalto, R.: KAM for autonomous quasi-linear perturbations of mKdV. Bollettino Unione Matematica Italiana 9, 143–188, 2016

    Article  MathSciNet  Google Scholar 

  5. Bambusi, D., Grébert, B., Maspero, A., Robert, D.: Growth of Sobolev norms for abstract linear Schrödinger equations. J. Eur. Math. Soc. (JEMS) (2017). https://doi.org/10.4171/JEMS/10177

  6. Berti, M., Biasco, L., Procesi, M.: KAM theory for the Hamiltonian DNLW. Ann. Sci. Éc. Norm. Supér. (4) 46(fascicule 2), 301–373, 2013

    Article  MathSciNet  Google Scholar 

  7. Berti, M., Biasco, L., Procesi, M.: KAM theory for the reversible derivative wave equation. Arch. Ration. Mech. Anal. 212, 905–955, 2014

    Article  MathSciNet  Google Scholar 

  8. Berti, M., Bolle, P.: A Nash–Moser approach to KAM theory, Fields Institute Communications, special volume “Hamiltonian PDEs and Applications”, 255–284, 2015.

  9. Berti, M., Kappeler, T., Montalto, R.: Large KAM tori for perturbations of the defocusing NLS equation. Astérisque 403, 2018

  10. Berti, M., Montalto, R.: Quasi-periodic standing wave solutions of gravity capillary standing water waves. Mem. Am. Math. Soc., vol. 263, number 1273, 2020.

  11. Biasco, L., Coglitore, F.: Periodic orbits accumulating onto elliptic tori for the (N + 1)-body problem. Celest. Mech. Dyn. Astr. 101, 349, 2008

    Article  ADS  MathSciNet  Google Scholar 

  12. Bikbaev, R., Kuksin, S.: On the parametrization of finite-gap solutions by frequency vector and wave number vectors and a theorem by I. Krichever. Lett. Math. Phys. 28, 115–122, 1993

    Article  ADS  MathSciNet  Google Scholar 

  13. Dubrovin, B., Krichever, I., Novikov, S.: Integrable Systems I, in Dynamical Systems IV, Encyclopedia of Mathematical Sciences vol. 4 (Eds. Arnold V., Novikov S.) Springer, 173–280, 1990.

  14. Eliasson, H., Grébert, B., Kuksin, S.: KAM for the nonlinear beam equation. Geom. Funct. Anal. 26, 1588–1715, 2016

    Article  MathSciNet  Google Scholar 

  15. Eliasson, H., Kuksin, S.: KAM for non-linear Schrödinger equation. Ann. Math. 172, 371–435, 2010

    Article  MathSciNet  Google Scholar 

  16. Faddeev, L., Takhtajan, L.: Hamiltonian Methods in the Theory of Solitons. Springer, Berlin 1987

    Book  Google Scholar 

  17. Feola, R., Procesi, M.: Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations. J. Differ. Equ. 259(7), 3389–3447, 2015

    Article  ADS  Google Scholar 

  18. Gardner, C., Greene, J., Kruskal, M., Miura, R.: Korteweg–deVries equation and generalization. VI. Methods for exact solution. Commun. Pure Appl. Math. 27, 97–133, 1974

    Article  MathSciNet  Google Scholar 

  19. Giuliani, F.: Quasi-periodic solutions for quasi-linear generalized KdV equations. J. Differ. Equ. 262(10), 5052–5132, 2017

    Article  ADS  MathSciNet  Google Scholar 

  20. Kappeler, T., Montalto, R.: Normal form coordinates for the KdV equation having expansions in terms of pseudo-differential operators. Commun. Math. Phys. 375, 833–913, 2020. https://doi.org/10.1007/s00220-019-03498-1

    Article  ADS  MATH  Google Scholar 

  21. Kappeler, T., Pöschel, J.: KdV & KAM. Springer, Berlin 2003

    Book  Google Scholar 

  22. Kappeler, T., Schaad, B., Topalov, P.: Qualitative features of periodic solutions of KdV. Commun. Partial. Differ. Equ. 38(9), 1626–1673, 2013

    Article  MathSciNet  Google Scholar 

  23. Kappeler, T., Schaad, B., Topalov, P.: Semi-linearity of the nonlinear Fourier transform of the defocusing NLS equation. Int. Math. Res. Not. 23, 7212–7229, 2016

    MATH  Google Scholar 

  24. Kruskal, M., Zabusky, N.: Interactions of ‘solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243, 1965

    ADS  MATH  Google Scholar 

  25. Kuksin, S.: A KAM theorem for equations of the Korteweg–de Vries type. Rev. Math. Phys. 10(3), 1–64, 1998

    MathSciNet  MATH  Google Scholar 

  26. Kuksin, S.: Analysis of Hamiltonian PDEs. Oxford University Press, Oxford 2000

    MATH  Google Scholar 

  27. Kuksin, S., Perelman, G.: Vey theorem in infinite dimensions and its application to KdV. Discrete Contin. Dyn. Syst. 27(1), 1–24, 2010

    Article  MathSciNet  Google Scholar 

  28. Lax, P.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490, 1968

    Article  MathSciNet  Google Scholar 

  29. Liu, J., Yuan, X.: A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations. Commun. Math. Phys 307(3), 629–673, 2011

    Article  ADS  MathSciNet  Google Scholar 

  30. Miura, R., Gardner, C., Kruskal, M.: Korteweg–de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys. 9, 1204–1209, 1968

    Article  ADS  MathSciNet  Google Scholar 

  31. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton 1970

    Google Scholar 

  32. Zhang, J., Gao, M., Yuan, X.: KAM tori for reversible partial differential equations. Nonlinearity 24, 1189–1228, 2011

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This project was motivated by questions raised by S. Kuksin and V. Zakharov. We would like to thank them for their input. We would also like to thank M. Procesi for very valuable feedback. Part of this work was written during the stay of M. Berti at FIM at ETHZ. We thank FIM for the kind hospitality and support. In addition, the research was partially supported by PRIN 2015KB9WPT005 (M.B.), by the Swiss National Science Foundation (T.K., R.M.), and by INDAM-GNFM (R.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Berti.

Additional information

Communicated by N. Masmoudi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berti, M., Kappeler, T. & Montalto, R. Large KAM Tori for Quasi-linear Perturbations of KdV. Arch Rational Mech Anal 239, 1395–1500 (2021). https://doi.org/10.1007/s00205-020-01596-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01596-2

Navigation