Skip to main content

Advertisement

Log in

Development of High Strength and Toughness Non-Heated Al–Mg–Si Alloys for High-Pressure Die-Casting

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Based on the 3 factors and 3 levels orthogonal experiment method, compositional effects of Mg, Si, and Ti addition on the microstructures, tensile properties, and fracture behaviors of the high-pressure die-casting Al-xMg-ySi-zTi alloys have been investigated. The analysis of variance shows that both Mg and Si apparently influence the tensile properties of the alloys, while Ti does not. The tensile mechanical properties are comprehensively influenced by the amount of eutectic phase (α-Al + Mg2Si), the average grain size, and the content of Mg dissolved into α-Al matrix. The optimized alloy is Al-7.49 Mg-3.08Si-0.01Ti (wt%), which exhibits tensile yield strength of 219 MPa, ultimate tensile strength of 401 MPa, and elongation of 10.5%. Furthermore, contour maps, showing the relationship among compositions, microstructure characteristics, and the tensile properties are constructed, which provide guidelines for developing high strength and toughness Al–Mg–Si–Ti alloys for high-pressure die-casting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.I. Taub, A.A. Luo, Advanced lightweight materials and manufacturing processes for automotive applications. MRS Bull. 40, 1045 (2015)

    Article  Google Scholar 

  2. G.S. Cole, A.M. Sherman, Light weight materials for automotive applications. Mater. Charact. 35, 3 (1995)

    Article  CAS  Google Scholar 

  3. A. Morita, Aluminum alloys for automobile applications, Proceedings of the 6th International Conference on Aluminum Alloys (Proc. 6th ICAA) 1, 25 (1998)

  4. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P.D. Smet, A. Haszler, A. Vieregge, Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A 280, 37 (2000)

    Article  Google Scholar 

  5. J.T. Staley, D.J. Lege, Advances in aluminium alloy products for structural applications in transportation. Le J. de Phys. IV. 3, 179 (1993)

  6. S. Ji, Light-Weighted Materials for Automotive Industry. BCAST Internal Report (Brunel University, UK, 2011).

    Google Scholar 

  7. G. Davies, Materials for Automobile Bodies, 2nd edn. (Butterworth-Heinemann, Oxford, 2012).

    Google Scholar 

  8. J.G. Kaufman, E. Rooy, Aluminum Alloy Castings: Properties, Processes, and Applications, 1st edn. (ASM International, US, 2004).

    Google Scholar 

  9. X. Dong, H. Yang, X. Zhu, S. Ji, High strength and ductility aluminium alloy processed by high pressure die casting. J. Alloy Compd. 773, 86 (2019)

    Article  CAS  Google Scholar 

  10. S. Ji, F. Yan, Z. Fan, Development of a high strength Al–Mg2Si–Mg–Zn based alloy for high pressure die casting. Mater. Sci. Eng. A 626, 165 (2015)

    Article  CAS  Google Scholar 

  11. F. Yan, W. Yang, S. Ji, Z. Fan, Effect of solutionising and ageing on the microstructure and mechanical properties of a high strength die-cast Al–Mg–Zn–Si alloy. Mater. Chem. Phys. 167, 88 (2015)

    Article  CAS  Google Scholar 

  12. V.S. Zolotorevsky, N.A. Belov, M.V. Glazoff, Casting Aluminum Alloys, 1st edn. (Elsevier, Oxford, 2007).

    Google Scholar 

  13. F. Bonollo, N. Gramegna, G. Timelli, High-pressure die-casting: Contradictions and challenges. JOM 67, 901 (2015)

    Article  Google Scholar 

  14. F. Casarotto, A.J. Franke, R. Franke, Advanced Materials in Automotive Engineering, 1st edn. (Woodhead, Cambridge, 2012).

    Google Scholar 

  15. S. Ji, H. Yang, X. Cui, Z. Fan, Macro-heterogeneities in microstructures, concentrations, defects and tensile properties of die cast Al–Mg–Si alloys. Mater. Sci. Technol. 33, 2223 (2017)

    Article  CAS  Google Scholar 

  16. P. Zhang, Z. Li, B. Liu, W. Ding, L. Peng, Improved tensile properties of a new aluminum alloy for high pressure die casting. Mater. Sci. Eng. A 651, 376 (2016)

    Article  CAS  Google Scholar 

  17. Z. Hu, L. Wan, S. Wu, H. Wu, X. Liu, Microstructure and mechanical properties of high strength die-casting Al–Mg–Si–Mn alloy. Mater. Des. 46, 451 (2013)

    Article  CAS  Google Scholar 

  18. S. Ji, D. Watson, Z. Fan, M. White, Development of a super ductile diecast Al–Mg–Si alloy. Mater. Sci. Eng. A 556, 824 (2012)

    Article  CAS  Google Scholar 

  19. H. Koch, B. Lenczowski, Al/Mg/Si Cast Aluminium Containing Scandium. E. U. Patent 2005/047554, 26 May 2005

  20. G. Trenda, A. Kraly, Aluminum alloy. US Patent 8,337,644, 25 Dec 2012

  21. H. Yang, D. Watson, Y. Wang, S. Ji, Effect of nickel on the microstructure and mechanical property of die-cast Al–Mg–Si–Mn alloy. J. Mater. Sci. 49, 8412 (2014)

    Article  CAS  Google Scholar 

  22. S. Ji, W. Yang, F. Gao, D. Watson, Z. Fan, Effect of iron on the microstructure and mechanical property of Al–Mg–Si–Mn and Al–Mg–Si diecast alloys. Mater. Sci. Eng. A 564, 130 (2013)

    Article  CAS  Google Scholar 

  23. U. Hielscher, H. Sternau, H. Koch, R. Klos, New developed pressure die casting alloy with excellent mechanical properties in the as-cast condition. Giesserei 85, 62 (1998)

    CAS  Google Scholar 

  24. U. Hielscher, H. Sternau, H. Koch, A. Franke, Magsimal-59, an AlMgMnSi-type squeeze-casting alloy designed for temper F. Paper presented at the 125th annual meeting and exhibition of the Minerals, Metals and Materials Society, California, US, 4-8th February 1996

  25. S. Otarawanna, C.M. Gourlay, H.I. Laukli, A.K. Dahle, Microstructure formation in AlSi4MgMn and AlMg5Si2Mn high-pressure die castings. Metall. Mater. Trans. A 40, 1645 (2009)

    Article  Google Scholar 

  26. S. Ji, Y. Wang, D. Watson, Z. Fan, Microstructural evolution and solidification behavior of Al-Mg-Si alloy in high-pressure die casting. Metall. Mater. Trans. A 44, 3185 (2013)

    Article  CAS  Google Scholar 

  27. N.A. Belov, D.G. Eskin, A.A. Aksenov, Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys. (Elsevier, Oxford, 2005)

    Google Scholar 

  28. D.M. Stefanscu, J.R. Davis, J.D. Destefani (Eds.), ASM Metals Handbook, Casting. Vol. 15, 9th edn. (ASM International, US, 1998)

  29. L. Yuan, L. Peng, J. Han, B. Liu, Y. Wu, J. Chen, Effect of Cu addition on microstructures and tensile properties of high-pressure die-casting Al-5.5 Mg-0.7 Mn alloy. J. Mater. Sci. Technol. 35, 1017 (2019)

    Article  Google Scholar 

  30. P. Zhang, Z. Li, B. Liu, W. Ding, Tensile properties and deformation behaviors of a new aluminum alloy for high pressure die casting. J. Mater. Sci. Technol. 33, 367 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key Research and Development Program of China (No. 2016YFB0301001) and the Science & Technology Program of Zhaoqing (No. 2018K006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ming Peng.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, LY., Han, PW., Asghar, G. et al. Development of High Strength and Toughness Non-Heated Al–Mg–Si Alloys for High-Pressure Die-Casting. Acta Metall. Sin. (Engl. Lett.) 34, 845–860 (2021). https://doi.org/10.1007/s40195-020-01174-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01174-1

Keywords

Navigation