Skip to main content
Log in

Fluorescence, DNA Interaction and Cytotoxicity Studies of 4,5-Dihydro-1H-Pyrazol-1-Yl Moiety Based Os(IV) Compounds: Synthesis, Characterization and Biological Evaluation

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Osmium(IV) pyrazole compounds and ligands were synthesized and well characterised. Ligands were characterized by heteronuclear NMR spectroscopy (1H & 13C), elemental analysis, IR spectroscopy and liquid crystal mass spectroscopy. Os(IV) complexes were characterized by ESI-MS, ICP-OES, IR spectroscopy, conductance measurements, magnetic measurements and electronic spectroscopy. Binding of compounds with HS-DNA were evaluated using viscosity measurements, absorption titration, fluorescence quenching, and molecular docking, which show effective intercalation mode exhibited by compounds. Binding constant of Os(IV) complexes are found to be 8.1 to 9.2 × 104 M−1. Bacteriostatic and cytotoxic activities were carried out to evaluate MIC, LC50, and IC50. The compounds have been undergone bacteriostatic screening using three sets of Gram+ve and two sets of Gram-ve bacteria. MIC of complexes are found to be 72.5–100 μM, whereas that of ligands fall at about 122.5–150 μM.. LC50 count of ligands fall in the range of 16.22–17.28 μg/mL whereas that of complexes of Os(IV) fall in the range of 4.87–5.87 μg/mL. IC50 of osmium compounds were evaluated using HCT-116 cell line. All the Os(IV) compounds show moderate IC50.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Kaushal T, Srivastava G, Sharma A, Singh Negi A (2019) An insight into medicinal chemistry of anticancer quinoxalines. Bioorg Med Chem 27:16–35

    Article  CAS  Google Scholar 

  2. Sulpizio C, Breibeck J, Rompel A (2018) Recent progress in synthesis and characterization of metal chalcone complexes and their potential as bioactive agents. Coord Chem Rev 374:497–524

    Article  CAS  Google Scholar 

  3. Liu X, Hamon J-R (2019) Recent developments in penta-, hexa- and heptadentate Schiff base ligands and their metal complexes. Coord Chem Rev 389:94–118

    Article  CAS  Google Scholar 

  4. Ravera M, Gabano E, MJ MG, Osella D (2019) A view on multi-action Pt(IV) antitumor prodrugs. Inorg Chim Acta 492:32–47

    Article  CAS  Google Scholar 

  5. El-Deen IM, Shoair AF, El-Bindary MA (2019) Synthesis, characterization and biological properties of oxovanadium(IV) complexes. J Mol Struct 1180:420–437

    Article  CAS  Google Scholar 

  6. Vijayakrishnan P, Arul Antony S, Velmurugan D (2018) Structural data of DNA binding and molecular docking studies of dihydropyrimidinone transition metal complexes. Data Brief 19:817–825

    Article  CAS  Google Scholar 

  7. Jeżowska-Bojczuk M et al (2018) Peptides having antimicrobial activity and their complexes with transition metal ions. Eur J Med Chem 143:997–1009

    Article  Google Scholar 

  8. de Pauli PM, Araújo ALD, Arboleda LPA, Palmier NR, Fonsêca JM, Gomes-Silva W, Madrid-Troconis CC, Silveira FM, Martins MD, Faria KM, Ribeiro ACP, Brandão TB, Lopes MA, Leme AFP, Migliorati CA, Santos-Silva AR (2019) Tumor safety and side effects of photobiomodulation therapy used for prevention and management of cancer treatment toxicities. A systematic review. Oral Oncol 93:21–28

    Article  Google Scholar 

  9. Haase AA, Bauer EB, Kühn FE, Crans DC (2019) Speciation and toxicity of rhenium salts, organometallics and coordination complexes. Coord Chem Rev 394:135–161

    Article  CAS  Google Scholar 

  10. Štarha P, Trávníček Z (2019) Azaindoles: suitable ligands of cytotoxic transition metal complexes. J Inorg Biochem 197:110695

    Article  Google Scholar 

  11. Štarha P, Trávníček Z (2019) Non-platinum complexes containing releasable biologically active ligands. Coord Chem Rev 395:130–145

    Article  Google Scholar 

  12. Zhou B, Ji M, Cai J (2018) Design, synthesis and biological evaluation of bitopic arylpiperazine-hexahydro-pyrazinoquinolines as preferential dopamine D3 receptor ligands. Bioorg Chem 77:125–135

    Article  CAS  Google Scholar 

  13. Thangaraj M, Gengan RM, Ranjan B, Muthusamy R (2018) Synthesis, molecular docking, antimicrobial, antioxidant and toxicity assessment of quinoline peptides. J Photochem Photobiol B Biol 178:287–295

    Article  CAS  Google Scholar 

  14. SbMv N, Anand K, Anandakumar S, Singh S, Chuturgoon AA, Gengan RM (2016) Design, synthesis, anticancer, antimicrobial activities and molecular docking studies of novel quinoline bearing dihydropyridines. J Photochem Photobiol B Biol 165:266–276

    Article  Google Scholar 

  15. Khokra SL, Jyoti, Chetan, Kaushik P, Alam MM, Zaman MS, Ahmad A, Khan SA, Husain A, (2016).Quinoline based furanones and their nitrogen analogues: Docking, synthesis and biological evaluation Saudi Pharm J, 24:705–717

  16. Shang X-F, Morris-Natschke SL, Liu Y-Q, Guo X, Xu X-S, Goto M, Li J-C, Yang G-Z, Lee K-H (2018) Biologically active quinoline and quinazoline alkaloids part I. Med Res Rev 38:775–828

    Article  CAS  Google Scholar 

  17. Upadhyay KD, Dodia NM, Khunt RC, Chaniara RS, Shah AK (2018) Synthesis and biological screening of Pyrano[3,2-c]quinoline analogues as anti-inflammatory and anticancer agents. ACS Med Chem Lett 9:283–288

    Article  CAS  Google Scholar 

  18. Gubendran A, Kesavan MP, Ayyanaar S, Raja JD, Athappan P, Rajesh J (2017) Synthesis and characterization of water-soluble copper(II), cobalt(II) and zinc(II) complexes derived from 8-hydroxyquinoline-5-sulphonic acid: DNA binding and cleavage studies. Appl Organomet Chem 31:e3708

    Article  Google Scholar 

  19. Mehta JV, Gajera SB, Raval DB, Thakkar VR, Patel MN (2016) Biological assessment of substituted quinoline based heteroleptic organometallic compounds. MedChemComm 7:1617–1627

    Article  CAS  Google Scholar 

  20. Sugimoto H, Mikami A, Kai K, Sajith PK, Shiota Y, Yoshizawa K, Asano K, Suzuki T, Itoh S (2015) cis-1,2-Aminohydroxylation of alkenes involving a catalytic cycle of osmium(III) and osmium(V) centers: OsV(O)(NHTs) active oxidant with a macrocyclic tetradentate ligand. Inorg Chem 54:7073–7082

    Article  CAS  Google Scholar 

  21. Xiang J, Wang Q, Yiu S-M, Lau T-C (2017) Dual pathways in the oxidation of an osmium(III) guanidine complex. formation of osmium(VI) nitrido and osmium nitrosyl complex. Inorg Chem 56:2022–2028

    Article  CAS  Google Scholar 

  22. Xiang J, Su Q-Q, Luo L-J, Lau T-C (2019) Synthesis and reactivity of an osmium(iii) aminoguanidine complex. Dalton Trans 48:11404–11410

    Article  CAS  Google Scholar 

  23. Gatti A, Habtemariam A, Romero-Canelón I, Song J-I, Heer B, Clarkson GJ, Rogolino D, Sadler PJ, Carcelli M (2018) Half-Sandwich Arene ruthenium(II) and osmium(II) thiosemicarbazone complexes: solution behavior and antiproliferative activity. Organometallics 37:891–899

    Article  CAS  Google Scholar 

  24. Wootton CA, Sanchez-Cano C, Liu H-K, Barrow MP, Sadler PJ, O'Connor PB (2015) Binding of an organo–osmium(ii) anticancer complex to guanine and cytosine on DNA revealed by electron-based dissociations in high resolution top–down FT-ICR mass spectrometry. Dalton Trans 44:3624–3632

    Article  CAS  Google Scholar 

  25. Swavey S, Li K (2015) A Dimetallic osmium(II) complex as a potential phototherapeutic agent: binding and photocleavage studies with plasmid DNA. Eur J Inorg Chem 2015:5551–5555

    Article  CAS  Google Scholar 

  26. Zhang P, Huang H (2018) Future potential of osmium complexes as anticancer drug candidates, photosensitizers and organelle-targeted probes. Dalton Trans 47:14841–14854

    Article  CAS  Google Scholar 

  27. El-Gamal KM, Hagrs MS, Abulkhair HS (2016) Synthesis, characterization and antimicrobial evaluation of some novel quinoline derivatives bearing different heterocyclic moieties. Bull Fac Pharm Cairo Univ 54:263–273

    Google Scholar 

  28. Lay PA, Sargeson AM (1992) Tris(1,2-ethanediamine) complexes of osmium(IV), osmium(III) and osmium(II): oxidative dehydrogenation reactions. Inorg Chim Acta 198–200:449–460

    Article  Google Scholar 

  29. Maruyama K, Mishima Y, Minagawa K, Motonaka J (2001) Electrochemical and DNA-binding properties of dipyridophenazine complexes of osmium(II). 510:96–102

  30. Phadte AA, Banerjee S, Mate NA, Banerjee A (2019) Spectroscopic and viscometric determination of DNA-binding modes of some bioactive dibenzodioxins and phenazines. Biochem Biophys Rep 18:100629

    PubMed  PubMed Central  Google Scholar 

  31. Gupta RK, Sharma G, Pandey R, Kumar A, Koch B, Li P-Z, Xu Q, Pandey DS (2013) DNA/Protein binding, molecular docking, and in vitro anticancer activity of some thioether-dipyrrinato complexes. Inorg Chem 52:13984–13996

  32. Gilewska A, Masternak J, Kazimierczuk K, Trynda J, Wietrzyk J, Barszcz B (2018) Synthesis, structure, DNA binding and anticancer activity of mixed ligand ruthenium(II) complex. J Mol Struct 1155:288–296

    Article  CAS  Google Scholar 

  33. Thakor KP, Lunagariya MV, Bhatt BS, Patel MN (2019) Fluorescence and absorption studies of DNA–Pd(II) complex interaction: synthesis, spectroanalytical investigations and biological activities. Luminescence 34:113–124

    Article  CAS  Google Scholar 

  34. Kanthecha DA, Bhatt BS, Patel MN (2019) Synthesis, characterization and biological activities of imidazo[1,2-a]pyridine based gold(III) metal complexes. Heliyon 5:e01968

    Article  Google Scholar 

  35. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 6:71–79

  36. Thakor KP, Lunagariya MV, Bhatt BS, Patel MN (2019) Fluorescence and absorption titrations of bio-relevant imidazole based organometallic Pd(II) complexes with DNA: synthesis, characterization, DNA Interaction, Antimicrobial, Cytotoxic and Molecular Docking Studies. J Inorg Organomet Polym Mater 29:2262–2273

  37. Iftikhar B, Javed K, Khan MSU, Akhter Z, Mirza B, McKee V (2018) Synthesis, characterization and biological assay of Salicylaldehyde Schiff base Cu(II) complexes and their precursors. J Mol Struct 1155:337–348

    Article  CAS  Google Scholar 

  38. Ferri N, Facchetti G, Pellegrino S, Ricci C, Curigliano G, Pini E, Rimoldi I (2015) Promising antiproliferative platinum(II) complexes based on imidazole moiety: synthesis, evaluation in HCT-116 cancer cell line and interaction with Ctr-1 met-rich domain. Bioorg Med Chem 23:2538–2547

    Article  CAS  Google Scholar 

  39. Wang F-Y, Liu R, Huang K-B, Feng H-W, Liu Y-N, Liang H (2019) New platinum(II)-based DNA intercalator: synthesis, characterization and anticancer activity. Inorg Chem Commun 105:182–187

    Article  CAS  Google Scholar 

  40. Pursuwani BH, Bhatt BS, Vaidya FU, Pathak C, Patel MN (2020) Oxadiazole based Os(IV) compounds as potential DNA intercalator and cytotoxic agents. Inorg Chem Commun 119:108070

    Article  CAS  Google Scholar 

  41. Yadav SK, Yadav RK, Yadava U (2020) Computational investigations and molecular dynamics simulations envisioned for potent antioxidant and anticancer drugs using indole-chalcone-triazole hybrids. DNA Repair 86:102765

    Article  CAS  Google Scholar 

  42. Ramachandran E, Thomas SP, Poornima P, Kalaivani P, Prabhakaran R, Padma VV, Natarajan K (2012) Evaluation of DNA binding, antioxidant and cytotoxic activity of mononuclear Co(III) complexes of 2-oxo-1,2-dihydrobenzo[h]quinoline-3-carbaldehyde thiosemicarbazones. Eur J Med Chem 50:405–415

    Article  CAS  Google Scholar 

  43. Thirunavukkarasu T, Sparkes HA, Natarajan K (2018) Quinoline based Pd(II) complexes: synthesis, characterization and evaluation of DNA/protein binding, molecular docking and in vitro anticancer activity. Inorg Chim Acta 482:229–239

  44. Desai NC, Dodiya AM (2014) Synthesis, characterization and antimicrobial screening of quinoline based quinazolinone-4-thiazolidinone heterocycles. Arab J Chem 7:906–913

    Article  CAS  Google Scholar 

  45. Gajera SB, Mehta JV, Kanthecha DN, Patel RR, Patel MN (2017) Novel cytotoxic oxovanadium(IV) complexes: influence of pyrazole-incorporated heterocyclic scaffolds on their biological response. Appl Organomet Chem 31:e3767

    Article  Google Scholar 

  46. Jabeen M, Ali S, Shahzadi S, Sharma SK, Qanungo K (2014) Synthesis, characterization, theoretical study and biological activities of oxovanadium (IV) complexes with 2-thiophene carboxylic acid hydrazide. J Photochem Photobiol B Biol 136:34–45

    Article  CAS  Google Scholar 

  47. Varma RR, Pandya JG, Sharma J, Pathak C, Patel MN (2020) DNA interaction, in vivo and in vitro cytotoxicity, reactive oxygen species, lipid peroxidation of –N, S donor Re(I) metal complexes. Mol Divers. https://doi.org/10.1007/s11030-020-10040-2.

Download references

Acknowledgements

The authors thankful to the Head, Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India, for providing the laboratory facilities.

Funding

The authors thankful to U. G. C., New Delhi for providing financial assistance of UGC BSR grant No. C/2015/BSR/Chemistry/1579.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [Bharat H. Pursuwani], [Mohan N. Patel]; Methodology: [Bharat H. Pursuwani], [Mohan N. Patel]; Formal analysis and investigation: [Bharat H. Pursuwani], [Bhupesh S. Bhatt], [Mohan N. Patel]; Writing - original draft preparation: [Bharat H. Pursuwani], [Bhupesh S. Bhatt]; Writing - review and editing: [Bharat H. Pursuwani], [Bhupesh S. Bhatt]; Resources: [Foram U. Vaidya, Chandramani Pathak, Mohan N. Patel]; Supervision: [Mohan N. Patel].

Corresponding author

Correspondence to Mohan N. Patel.

Ethics declarations

Competing Interests

Not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 22290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pursuwani, B.H., Bhatt, B.S., Vaidya, F.U. et al. Fluorescence, DNA Interaction and Cytotoxicity Studies of 4,5-Dihydro-1H-Pyrazol-1-Yl Moiety Based Os(IV) Compounds: Synthesis, Characterization and Biological Evaluation. J Fluoresc 31, 349–362 (2021). https://doi.org/10.1007/s10895-020-02657-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02657-1

Keywords

Navigation