Skip to main content
Log in

On sparse geometry of numbers

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

Let L be a lattice of full rank in n-dimensional real space. A vector in L is called i-sparse if it has no more than i nonzero coordinates. We define the ith successive sparsity level of L, \(s_i(L)\), to be the minimal s so that L has s linearly independent i-sparse vectors, then \(s_i(L) \le n\) for each \(1 \le i \le n\). We investigate sufficient conditions for \(s_i(L)\) to be smaller than n and obtain explicit bounds on the sup-norms of the corresponding linearly independent sparse vectors in L. These results can be viewed as a partial sparse analogue of Minkowski’s successive minima theorem. We then use this result to study virtually rectangular lattices, establishing conditions for the lattice to be virtually rectangular and determining the index of a rectangular sublattice. We further investigate the 2-dimensional situation, showing that virtually rectangular lattices in the plane correspond to elliptic curves isogenous to those with real j-invariant. We also identify planar virtually rectangular lattices in terms of a natural rationality condition of the geodesics on the modular curve carrying the corresponding points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliev, I., Averkov, G., De Loera, J.A., Oertel, T.: Optimizing sparsity over lattices and semigroups. In: Bienstock, D., Zambelli, G. (eds.) Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45771-6_4

    Chapter  Google Scholar 

  2. Aliev, I., De Loera, J., Oertel, T., O’Neill, C.: Sparse solutions of linear diophantine equations. SIAM J. Appl. Algebra. Geomet. 1(1), 239–253 (2017)

    Article  MathSciNet  Google Scholar 

  3. Baker, R., Masser, D.: Siegel’s lemma is sharp for almost all linear systems. Bull. Lond. Math. Soc. 51(5), 853–867 (2019)

    Article  MathSciNet  Google Scholar 

  4. Bombieri, E., Vaaler, J.D.: On Siegel’s lemma. Invent. Math. 73(1), 11–32 (1983)

    Article  MathSciNet  Google Scholar 

  5. Cohen, H., Strömberg, F.: Modular Forms. A Classical Approach. Graduate Studies in Mathematics, vol. 179. American Mathematical Society, Providence, RI (2017)

    MATH  Google Scholar 

  6. Eldar, Y.C., Kutyniok, G.: Compressed Sensing: Theory and Applications. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  7. Fukshansky, L., Needell, D., Sudakov, B.: An algebraic perspective on integer sparse recovery. Appl. Math. Comput. 340, 31–42 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Fukshansky, L., Guerzhoy, P., Luca, F.: On arithmetic lattices in the plane. Proc. Am. Math. Soc. 145(4), 1453–1465 (2017)

    Article  MathSciNet  Google Scholar 

  9. Gruber, P.M., Lekkerkerker, C.G.: Geometry of Numbers. North-Holland Publishing Co., New York (1987)

    MATH  Google Scholar 

  10. Koecher, M., Krieg, A.: Elliptische Funktionen und Modulformen. Springer-Verlag, Berlin (1998)

    Book  Google Scholar 

  11. Kühnlein, S.: Well-rounded sublattices. Int. J. Numer. Theory. 8(5), 1133–1144 (2012)

    Article  MathSciNet  Google Scholar 

  12. Miyake, T.: Modular Forms Modular forms, Translated from the 1976 Japanese original by Yoshitaka Maeda. Springer Monographs in Mathematics. Springer, Berlin (2006)

    Google Scholar 

  13. Schmidt, W.M.: Diophantine Approximations and Diophantine Equations. Lecture Notes in Mathematics, vol. 1467. Springer, Berlin (1991)

    Book  Google Scholar 

  14. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 106. Springer, New York (1986)

    Book  Google Scholar 

Download references

Acknowledgements

We wish to thank the anonymous referees for their helpful suggestions, which improved the quality of presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenny Fukshansky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fukshansky was partially supported by the Simons Foundation Grant #519058

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukshansky, L., Guerzhoy, P. & Kühnlein, S. On sparse geometry of numbers. Res Math Sci 8, 2 (2021). https://doi.org/10.1007/s40687-020-00238-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-020-00238-z

Keywords

Mathematics Subject Classification

Navigation