Skip to main content
Log in

Development of a green synthesized silver nanoparticle-based antioxidant capacity method using carob extract

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

The measurement of total antioxidant capacity (TAC) indicating the cooperative action of all antioxidants in a complex sample is an important analytical challenge. A novel green silver nanoparticle-based antioxidant capacity (GSNP-AC) method using carob extract was designed for TAC measurement. Green synthesis of nanoparticles has various advantages such as environmentally friendliness, reliability, sustainability and fast production. In the presence of silver seeds formed with carob extract, Ag+ is reduced to spherical silver nanoparticles (SNPs) with antioxidants, resulting in enlarged particles with a symmetric surface plasmon resonance (SPR) absorption band at 434 nm. The SPR of SNPs allowed quantification of antioxidants (i.e., increase in SPR absorbance being correlated to antioxidant concentration), and the GSNP-AC method gave a linear response over a wide concentration range of antioxidants. The molar absorptivity and LOD for trolox were 11700 L mol−1 cm−1 and 0.31 µM, respectively. The proposed method was validated in terms of concentration-dependent linear response, additivity of absorbances, precision and accuracy. The results obtained with the proposed method for standard antioxidants, synthetic mixtures and real sample extracts were correlated with those of the traditional CUPRAC method. This green synthesized silver nanoparticle-based TAC method showed simple, rapid, cost-effective, and eco-friendly superiorities over similar other nanoparticle-based assays.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gupta, R.K., Patel, A.K., Shah, N., Choudhary, A.K., Jha, U.K., Yadav, U.C., Gupta, P.K.., Pakuwal, U: Oxidative stress and antioxidants in disease and cancer: a review. Asian Pac. J. Cancer. P. 15, 4405–4409 (2014)

  2. Ozougwu, J.C., Obiukwu, C.E., Obimba, K.C., Elom, M.O., Usanga, V.U.: Haematological changes associated with male and female typhoid fever patients. Int. J. Res. Pharm. Biosci. 3, 21–26 (2016)

    Google Scholar 

  3. Apak, R., Çapanoğlu, E., Arda, A.Ü.: Nanotechnological Methods of Antioxidant Characterization. In: Guthrie, B., Beauchamp, J., Buettner, A., Lavine, B.K. (eds.) The Chemical Sensory Informatics of Food: Measurement, pp. 209–234. Analysis, Integration, American Chemical Society, Washington DC (2015)

    Google Scholar 

  4. Singh, P., Kim, Y.J., Zhang, D., Yang, D.C.: Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34, 588–599 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. Ahmad, Z., Afreen, A., Mehmood, M., Ali, I., Asgher, R., Aziz, M.: One-step synthesis of Ag nano-assemblies and study of their antimicrobial activities. J. Nanostructure Chem. 5, 325–331 (2015)

    Article  CAS  Google Scholar 

  6. Zhang, X.F., Liu, Z.G., Shen, W., Gurunathan, S.: Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17, 1534 (2016)

    Article  PubMed Central  CAS  Google Scholar 

  7. Rolim, W.R., Pelegrino, M.T., de Araújo Lima, B., Ferraz, L.S., Costa, F.N., Bernardes, J.S., Rodigues, T., Brocchi, A.B., Seabra, A.B.: Green tea extract mediated biogenic synthesis of silver nanoparticles: characterization, cytotoxicity evaluation and antibacterial activity. Appl. Surf. Sci. 463, 66–74 (2019)

    Article  CAS  Google Scholar 

  8. Singh, J., Dutta, T., Kim, K.H., Rawat, M., Samddar, P., Kumar, P.: ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16, 84 (2018)

    Article  CAS  Google Scholar 

  9. Khandel, P., Yadaw, R.K., Soni, D.K., Kanwar, L., Shahi, S.K.: Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J. Nanostructure Chem. 8, 217–254 (2018)

    Article  CAS  Google Scholar 

  10. Pirtarighat, S., Ghannadnia, M., Baghshahi, S.: Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J. Nanostructure Chem. 9, 1–9 (2019)

    Article  CAS  Google Scholar 

  11. Maity, D., Pattanayak, S., Mollick, M.M.R., Rana, D., Mondal, D., Bhowmick, B., Das, S.K., Chattopadhyay, S., Das, B., Roy, S., Chakraborty, M., Chattopadhyay, D.: Green one step morphosynthesis of silver nanoparticles and their antibacterial and anticancerous activities. New J. Chem. 40, 2749–2762 (2016)

    Article  CAS  Google Scholar 

  12. Mollick, M. M. R., Bhowmick, B., Mondal, D., Maity, D., Rana, D., Dash, S. K., Chattopadhyay, S., Roy, S., Sarkar, J., Acharya, K., Chakraborty, M., Chattopadhyay, D.: Anticancer (in vitro) and antimicrobial effect of gold nanoparticles synthesized using Abelmoschus esculentus (L.) pulp extract via a green route. RSC Adv. 4, 37838–37848 (2014).

  13. Mollick, M.M.R., Bhowmick, B., Maity, D., Mondal, D., Roy, I., Sarkar, J., Rana, D., Acharya, K., Chattopadhyay, S., Chattopadhyay, D.: Green synthesis of silver nanoparticles-based nanofluids and investigation of their antimicrobial activities. Microfluid. Nanofluid. 16, 541–551 (2014)

    Article  CAS  Google Scholar 

  14. Stavrou, I.J., Christou, A., Kapnissi-Christodoulou, C.P.: Polyphenols in carobs: A review on their composition, antioxidant capacity and cytotoxic effects, and health impact. Food Chem. 269, 355–374 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. Dhaouadi, K., Belkhir, M., Akinocho, I., Raboudi, F., Pamies, D., Barrajón, E., Estevan, S., Fattouch, S.: Sucrose supplementation during traditional carob syrup processing affected its chemical characteristics and biological activities. LWT-Food Sci. Technol. 57, 1–8 (2014)

    Article  CAS  Google Scholar 

  16. Zhu, B.J., Zayed, M.Z., Zhu, H.X., Zhao, J., Li, S.P.: Functional polysaccharides of carob fruit: a review. Chin. Med. 14, 40 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mantri, Y., Davidi, B., Lemaster, J.E., Hariri, A., Jokerst, J.V.: Iodide-doped precious metal nanoparticles: measuring oxidative stress in vivo via photoacoustic imaging. Nanoscale 12, 10511–10520 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Apak, R.: Current issues in antioxidant measurement. J. Agr. Food Chem. 67, 9187–9202 (2019)

    Article  CAS  Google Scholar 

  19. Özyürek, M., Güngör, N., Baki, S., Güçlü, K., Apak, R.: Development of a silver nanoparticle-based method for the antioxidant capacity measurement of polyphenols. Anal. Chem. 84, 8052–8059 (2012)

    Article  PubMed  CAS  Google Scholar 

  20. Xu, W., Zhang, F., Luo, Y., Ma, L., Kou, X., Huang, K.: Antioxidant activity of a water-soluble polysaccharide purified from Pteridium aquilinum. Carbohyd. Res. 344, 217–222 (2009)

    Article  CAS  Google Scholar 

  21. Huang, H., Yang, X.: Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohyd. Res. 339, 2627–2631 (2004)

    Article  CAS  Google Scholar 

  22. Marambio-Jones, C., Hoek, E.M.: A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 12, 1531–1551 (2010)

    Article  CAS  Google Scholar 

  23. Apak, R., Güçlü, K., Özyürek, M., Karademir, S.E.: Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agr. Food Chem. 52, 7970–7981 (2004)

    Article  CAS  Google Scholar 

  24. Miller, J.C., Miller, J.N.: Errors in instrumental analysis; regression and correlation. In: Horwood E, Prentice H (eds) Statistics for analytical chemistry, 3rd edn. New York and London, pp. 101–139 (1993)

  25. Scampicchio, M., Wang, J., Blasco, A.J., Sanchez Arribas, A., Mannino, S., Escarpa, A.: Nanoparticle-based assays of antioxidant activity. Anal. Chem. 78, 2060–2063 (2006)

    Article  CAS  PubMed  Google Scholar 

  26. Szydłowska-Czerniak, A., Tułodziecka, A., Szłyk, E.: A silver nanoparticle-based method for determination of antioxidant capacity of rapeseed and its products. Analyst 137, 3750–3759 (2012)

    Article  PubMed  CAS  Google Scholar 

  27. Tułodziecka, A., Szydłowska-Czerniak, A.: Development of a novel gold nanoparticle-based method to determine antioxidant capacity of Brassica oilseeds, white flakes and meal. Food Chem. 208, 142–149 (2016)

    Article  PubMed  CAS  Google Scholar 

  28. Ahmad, N., Sharma, S., Alam, M.K., Singh, V.N., Shamsi, S.F., Mehta, B.R., Fatma, A.: Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloid. Surface. B 81, 81–86 (2010)

    Article  CAS  Google Scholar 

  29. Jiang, Z.J., Liu, C.Y.: Seed-mediated growth technique for the preparation of a silver nanoshell on a silica sphere. J. Phys. Chem. B 107, 12411–12415 (2003)

    Article  CAS  Google Scholar 

  30. Farag, M.A., El-Kersh, D.M.: Volatiles profiling in Ceratonia siliqua (Carob bean) from Egypt and in response to roasting as analyzed via solid-phase microextraction coupled to chemometrics. J. Adv. Res. 8, 379–385 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bhattarai, B., Zaker, Y., Bigioni, T.P.: Green synthesis of gold and silver nanoparticles: Challenges and opportunities. Curr. Opin. Green Sustain. Chem. 12, 91–100 (2018)

    Article  Google Scholar 

  32. Raveendran, P., Fu, J., Wallen, S.L.: Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 125, 13940–13941 (2003)

    Article  CAS  PubMed  Google Scholar 

  33. Elia, P., Zach, R., Hazan, S., Kolusheva, S., Porat, Z.E., Zeiri, Y.: Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int. J. Nanomed. 9, 4007–4021 (2014)

    Google Scholar 

  34. Balavandy, S.K., Shameli, K., Biak, D.R.B.A., Abidin, Z.Z.: Stirring time effect of silver nanoparticles prepared in glutathione mediated by green method. Chem. Cent. J. 8, 11 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Coseri, S., Spatareanu, A., Sacarescu, L., Rimbu, C., Suteu, D., Spirk, S., Harabagiu, V.: Green synthesis of the silver nanoparticles mediated by pullulan and 6-carboxypullulan. Carbohyd. Polym. 116, 9–17 (2015)

    Article  CAS  Google Scholar 

  36. Çelik, S.E., Bekdeşer, B., Apak, R.: A novel colorimetric sensor for measuring hydroperoxide content and peroxyl radical scavenging activity using starch-stabilized gold nanoparticles. Talanta 196, 32–38 (2019)

    Article  PubMed  CAS  Google Scholar 

  37. Gurunathan, S., Han, J., Park, J.H., Kim, J.H.: A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Res. Lett. 9, 1–11 (2014)

    Article  CAS  Google Scholar 

  38. Singh, P., Kim, Y.J., Yang, D.C.: A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves. Artif. Cell Nanomed. B 44, 1949–1957 (2016)

    Article  CAS  Google Scholar 

  39. Okafor, F., Janen, A., Kukhtareva, T., Edwards, V., Curley, M.: Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. Int. J. Env. Res. Pub. He. 10, 5221–5238 (2013)

    Article  CAS  Google Scholar 

  40. Siegel, J., Kvítek, O., Ulbrich, P., Kolská, Z., Slepička, P., Švorčík, V.: Progressive approach for metal nanoparticle synthesis. Mater. Lett. 89, 47–50 (2012)

    Article  CAS  Google Scholar 

  41. Moores, A., Goettmann, F.: The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New. J. Chem. 30, 1121–1132 (2006)

    Article  CAS  Google Scholar 

  42. Goulas, V., Stylos, E., Chatziathanasiadou, M.V., Mavromoustakos, T., Tzakos, A.G.: Functional components of carob fruit: Linking the chemical and biological space. Int. J. Mol. Sci. 17, 1875 (2016)

    Article  PubMed Central  CAS  Google Scholar 

  43. Quiles-Carrillo, L., Mellinas, C., Garrigós, M.D.C., Balart, R., Torres-Giner, S.: Optimization of microwave-assisted extraction of phenolic compounds with antioxidant activity from carob pods. Food Anal. Methods 12, 2480–2490 (2019)

    Article  Google Scholar 

  44. Dinesh, V.P., Biji, P., Ashok, A., Dhara, S.K., Kamruddin, M., Tyagi, A.K., Raj, B.: Plasmon-mediated, highly enhanced photocatalytic degradation of industrial textile dyes using hybrid ZnO@Ag core-shell nanorods. RSC Adv. 4, 58930–58940 (2014)

    Article  CAS  Google Scholar 

  45. Ledet, G., Bostanian, L.A., Mandal, T.K.: Nanoemulsions as a vaccine adjuvant. In: Tiwari, A. Tiwari (eds.) Bioengineered Nanomaterials, CRC Press: Boca Raton, pp. 125–148 (2013)

  46. Rice-Evans, C.A., Miller, N.J., Paganga, G.: Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio. Med. 20, 933–956 (1996)

    Article  CAS  Google Scholar 

  47. Robards, K., Prenzler, P.D., Tucker, G., Swatsitang, P., Glover, W.: Phenolic compounds and their role in oxidative processes in fruits. Food Chem. 66, 401–436 (1999)

    Article  CAS  Google Scholar 

  48. Rice-Evans, C., Miller, N., Paganga, G.: Antioxidant properties of phenolic compounds. Trends Plant Sci. 2, 152–159 (1997)

    Article  Google Scholar 

  49. Apak, R., Güçlü, K., Özyürek, M., Çelik, S.E.: Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim. Acta 160, 413–419 (2008)

    Article  CAS  Google Scholar 

  50. Taguchi, R., Hatayama, K., Takahashi, T., Hayashi, T., Sato, Y., Sato, D., Ohta, K., Nakano, H., Seki, C., Ende, Y., Tokuraku, K., Uwai, K.: Structure–activity relations of rosmarinic acid derivatives for the amyloid β aggregation inhibition and antioxidant properties. Eur. J. Med. Chem. 138, 1066–1075 (2017)

    Article  CAS  PubMed  Google Scholar 

  51. Apak, R., Güçlü, K., Demirata, B., Özyürek, M., Çelik, S.E., Bektaşoğlu, B., Berker, K.I., Özyurt, D.: Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 12, 1496–1547 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Dr. İsmail Tuncer Değim for sharing his research infrastructures. The authors also thank Istanbul University-Cerrahpasa, Inorganic Chemistry Department for sharing its research infrastructures. The authors also acknowledge Istanbul University-Cerrahpasa, Application & Research Center for the Measurement of Food Antioxidants for sharing its research infrastructures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reşat Apak.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beğiç, N., Bener, M. & Apak, R. Development of a green synthesized silver nanoparticle-based antioxidant capacity method using carob extract. J Nanostruct Chem 11, 381–394 (2021). https://doi.org/10.1007/s40097-020-00374-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-020-00374-6

Keywords

Navigation