Skip to main content
Log in

M23C6 precipitation and Si segregation promoted by deep cryogenic treatment aggravating pitting corrosion of supermartensitic stainless steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The microstructure evolution and the pitting corrosion resistance of a supermartensitic stainless steel after deep cryogenic treatment process were clarified through X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy (TEM) and electrochemical methods. The results showed that the microstructure of supermartensitic stainless steel mainly consisted of reversed austenite, tempered martensite, and M23C6 carbides after tempering. The deep cryogenic treatment promoted the refinement of the martensite laths and the precipitation of the carbides in comparison with the traditional process. TEM analysis indicated that the segregation of Si atoms at the boundary was found at the interface between carbide and martensite. The pitting corrosion potential of the specimens subjected to deep cryogenic treatment decreased with the elevated tempering temperature, and the lowest pitting corrosion potential was found at the tempering temperature of 650 °C. The sensitivity of the pitting corrosion potential was attributed to the precipitation of M23C6 carbides and Si atoms segregation. Si atoms segregation engendered the formation of Cr-depleted zone near M23C6 and impeded the recovery of Cr-depleted zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. W. Li, H. Gong, Z. Bai, D. Chen, Mater. Rep. 14 (2000) No. 3, 16–18.

    Google Scholar 

  2. W. Reitz, J. Pendray, Mater. Manuf. Process 16 (2001) 829–840.

    Article  Google Scholar 

  3. S. Akincioğlu, H. Gökkaya, İ. Uygur, Int. J. Adv. Manuf. Technol. 78 (2015) 1609–1627.

    Article  Google Scholar 

  4. P. Baldissera, C. Delprete, Open Mech. Eng. J. 2 (2008) 1–11.

    Article  Google Scholar 

  5. A. Akhbarizadeh, K. Amini, S. Javadpour, Mater. Des. 41 (2012) 114–123.

    Article  Google Scholar 

  6. S. Ramesh, B. Bhuvaneswari, G.S. Palani, D. Mohan Lal, R. Nagesh Iyer, J. Mech. Sci. Technol. 31 (2017) 123–132.

    Article  Google Scholar 

  7. S. Ramesh, B. Bhuvaneshwari, G.S. Palani, D. Mohan Lal, K. Mondal, R.K. Gupta, Vacuum 159 (2018) 468–475.

    Article  Google Scholar 

  8. G. Prieto, J.E. Perez Ipina, W.R. Tuckart, Mater. Sci. Eng. A 605 (2014) 236–243.

    Article  Google Scholar 

  9. Y. Zhang, D. Zhan, X. Qi, Z. Jiang, Mater. Charact. 144 (2018) 393–399.

    Article  Google Scholar 

  10. S.K. Bonagani, V. Bathula, V. Kain, Corros. Sci. 131 (2018) 340–354.

    Article  Google Scholar 

  11. J.O. Park, S. Matsch, H. Böhni, J. Electrochem. Soc. 149 (2002) B34–B39.

    Article  Google Scholar 

  12. P.I. Nice, J.W. Martin, NACE Int. 2005 (2005) 3–7.

    Google Scholar 

  13. I. Muto, Y. Izumiyama, N. Hara, J. Electrochem. Soc. 154 (2007) C439–C444.

    Article  Google Scholar 

  14. R. Ke, R. Alkire, J. Electrochem. Soc. 142 (1995) 4056–4062.

    Article  Google Scholar 

  15. S.E. Lott, R.C. Alkire, J. Electrochem. Soc. 136 (1989) 973–979.

    Article  Google Scholar 

  16. D. Macdonald, Pure Appl. Chem. 71 (1999) 951–978.

    Article  Google Scholar 

  17. D.D. Macdonald, G.R. Engelhardt, Shreir’s Corros. 2 (2010) 1630–1679.

    Article  Google Scholar 

  18. W. Wang, V. Srinivasan, S. Siva, B. Albert, M. Lal, A. Alfantazi, Corrosion 70 (2014) 708–720.

    Article  Google Scholar 

  19. P. Baldissera, C. Delprete, Mater. Des. 31 (2010) 4731–4737.

    Article  Google Scholar 

  20. J. Tian, W. Wang, M. Babar Shahzad, W. Yan, Y. Shan, Z. Jiang, K. Yang, Acta Metall. Sin. (Engl. Lett.) 31 (2018) 785–797.

    Article  Google Scholar 

  21. J. Lv, H. Luo, T. Liang, Mater. Chem. Phys. 163 (2015) 496–500.

    Article  Google Scholar 

  22. Y. Lv, H. Luo, J. Tang, J. Guo, J. Pi, K. Ye, Mater. Res. Bulletin 107 (2018) 421–429.

    Google Scholar 

  23. S. Zheng, X. Bai, S. Li, J. Liang, K. Zhao, J. Iron Steel Res. 27 (2015) No. 9, 63–67.

    Google Scholar 

  24. X.P. Ma, L.J. Wang, C.M. Liu, S.V. Subramanian, Mater. Sci. Eng. A 539 (2012) 271–279.

    Article  Google Scholar 

  25. C.A.D. Rodrigues, R.M. Bandeira, B.B. Duarte, G. Tremiliosi-Filho, A.M. Junior Jr., Mater. Sci. Eng. A 650 (2016) 75–83.

    Article  Google Scholar 

  26. D.N. Zou, Y. Han, W. Zhang, X.D. Fang, J. Iron Steel Res. Int. 17 (2010) No. 8, 50–54.

    Article  Google Scholar 

  27. M. Schymura, R. Stegemann, A. Fischer, Int. J. Fatigue 79 (2015) 25–35.

    Article  Google Scholar 

  28. Y. Song, X. Li, L. Rong, Y. Li, Mater. Sci. Eng. A 528 (2011) 4075–4079.

    Article  Google Scholar 

  29. D. Xu, Y. Liu, Z. Ma, H. Li, Z. Yan, Int. J. Miner. Metall. Mater. 21 (2014) 279–288.

    Article  Google Scholar 

  30. E. Taban, E. Kaluc, O.O. Ojo, Mater. Testing 58 (2016) 501–518.

    Article  Google Scholar 

  31. A. Bojack, L. Zhao, P.F. Morris, J. Sietsma, Metall. Mater. Trans. A 47 (2016) 1996–2009.

    Article  Google Scholar 

  32. N. Nakada, T. Tsuchiyama, S. Takaki, N. Miyano, ISIJ Int. 51 (2011) 299–304.

    Article  Google Scholar 

  33. P.R. Howell, J.V. Bee, R.W.K. Honeycombe, Metall. Trans. A 10 (1979) 1213–1222.

    Article  Google Scholar 

  34. Y. Song, X.Y. Li, L.J. Rong, D.H. Ping, F.X. Yin, Y.Y. Li, Mater. Lett. 64 (2010) 1411–1414.

    Article  Google Scholar 

  35. J.D. Escobar, J.D. Poplawsky, G.A. Faria, J. Rodriguez, J.P. Oliveira, C.A.F. Salvador, P.R. Mei, S.S. Babu, A.J. Ramirez, Mater. Des. 140 (2018) 95–105.

    Article  Google Scholar 

  36. J. Janovec, A. Vyrostkova, P. Sevc, J.S. Robinson, M. Svoboda, J. Krestankova, H.J. Grabke, Acta Mater. 51 (2003) 4025–4032.

    Article  Google Scholar 

  37. T. Takeil, M. Yabe, A. Ooi, E. Tada, A. Nishikata, J. Electrochem. Soc. 166 (2019) C375–C381.

    Article  Google Scholar 

  38. J.S. Armijo, B.E. Wilde, Corros. Sci. 9 (1968) 649–664.

    Article  Google Scholar 

  39. Y. Song, D.H. Ping, F.X. Yin, X.Y. Li, Y.Y. Li, Mater. Sci. Eng. A 527 (2010) 614–618.

    Article  Google Scholar 

  40. J.W. Liu, G.F. Li, D. Chen, Z.H. Chen, Chin. J. Aeronaut. 25 (2012) 931–936.

    Article  Google Scholar 

  41. B.S. Amirkhiz, S. Xu, C. Scott, Materialia 6 (2019) 100330.

    Article  Google Scholar 

  42. Z.F Xu, Z.M. Ding, L.N. Dong, B. Liang, Metall. Mater. Trans. A 47 (2016) 4862–4868.

    Article  Google Scholar 

  43. E. Vincent, C.S. Becquart, C. Domain, Nucl. Instrum. Methods Phys. Res. Sect. B 228 (2005) 137–141.

    Article  Google Scholar 

  44. M. Yoshida, Scripta Metall. 16 (1982) 787–790.

    Article  Google Scholar 

  45. J.Z. Wang, Z.D. Liu, S.H. Bao, S.C. Cheng, J. Iron Steel Res. Int. 20 (2013) No. 10, 113–121.

    Article  Google Scholar 

  46. X. Lei, Y. Feng, J. Zhang, A. Fu, C. Yin, D.D. Macdonald, Electrochim. Acta 191 (2016) 640–650.

    Article  Google Scholar 

  47. T.J. Mesquita, E. Chauveau, M. Mantel, N. Bouvier, D. Koschel, Corros. Sci. 81 (2014) 152–161.

    Article  Google Scholar 

  48. L. Cho, L. Golem, E.J. Seo, D. Bhattacharya, J.G. Speer, K.O. Findley, J. Alloy. Compd. 846 (2020) 156349.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support received from the Central Iron and Steel Research Institute and the Research Center for Analysis and Measurement of Kunming University of Science and Technology (No. 2017M20152230069).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Li or Kun-yu Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Lü, Xy., Wu, Zw. et al. M23C6 precipitation and Si segregation promoted by deep cryogenic treatment aggravating pitting corrosion of supermartensitic stainless steel. J. Iron Steel Res. Int. 28, 629–640 (2021). https://doi.org/10.1007/s42243-020-00514-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00514-w

Keywords

Navigation