Skip to main content
Log in

Information leakage in a cross-border logistics supply chain considering demand uncertainty and signal inference

  • S.I.: Data-Driven OR in Transportation and Logistics
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In cross-border logistics, mainline carriers (MCs) confronting demand uncertainty have to share their information with the overseas regional carrier (RC) via information system or electronic data interchange. However, does the RC or the incumbent MC have incentives to disclose the demand information to a new MC? The new MC competes with the incumbent MC but has no demand information, while the incumbent MC has accumulated big data and known demand uncertainty well. In this paper, we study the supply chain parties’ preferences over information leakage in a system consisting of an incumbent MC, a new MC and an overseas RC. Interestingly, we show that, when there is no information leakage, the new MC’s signal inference dramatically restricts the RC’s pricing flexibility. This induces the RC to disclose the incumbent MC’s information. We also show that, information leakage alters the MCs’ competition and their profits by balancing the RC’s service price and the MCs’ order sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. See: https://www.pwc.com/gx/en/transportation-logistics/tl2030/emerging-markets/pdf/tl2030_vol3_final.pdf.

  2. Here, two competing MCs have the option to cooperate with their exclusive RCs or a common RC. If they rely on a common RC to provide cross-border logistics service, their decisions will be linked in senses of information exchange and the RC’s joint optimization in its own decision (e.g., the unit service price w). Therefore, we follow previous literature such as Wang et al. (2017a, b) and Niu et al. (2019) by referring such a supply chain to as a co-opetitive supply chain.

References

  • Adewole, A. (2005). Developing a strategic framework for efficient and effective optimisation of information in the supply chains of the UK clothing manufacture industry. Supply Chain Management, 10(5), 357–366.

    Article  Google Scholar 

  • Anand, K., & Goyal, M. (2009). Strategic information management under leakage in a supply chain. Management Science, 55(3), 438–452.

    Article  Google Scholar 

  • Asadabadi, A., & Miller-hooks, E. (2018). Co-opetition in enhancing global port network resiliency: A multi-leader, common-follower game theoretic approach. Transportation Research Part B: Methodological, 108, 281–298.

    Article  Google Scholar 

  • Barbot, C. (2011). Vertical contracts between airports and airlines: Is there a trade-off between welfare and competitiveness? Journal of Transport Economic and Policy, 45(2), 277–302.

    Google Scholar 

  • Brandenburger, A., & Nalebuff, B. (1996). Co-Opetition. New York: Doubleday.

    Google Scholar 

  • Choi, T., Govindan, K., Li, X., & Li, Y. (2017). Innovative supply chain optimization models with multiple uncertainty factors. Annals of Operations Research, 257, 1–14.

    Article  Google Scholar 

  • Choi, T., Wen, X., Sun, X., & Chung, S. (2019). The mean-variance approach for global supply chain risk analysis with air logistics in the blockchain technology era. Transportation Research Part E: Logistics and Transportation Review, 127, 178–191.

    Article  Google Scholar 

  • Chu, W., & Lee, C. (2006). Strategic information sharing in a supply chain. European Journal of Operational Research, 174(3), 1567–1579.

    Article  Google Scholar 

  • Fu, X., Dresner, M., & Oum, T. (2011). Effects of transport service differentiation in the US domestic airline market. Transportation Research Part E: Logistics and Transportation Review, 47(3), 297–305.

    Article  Google Scholar 

  • Gal-Or, E., Geylani, T., & Dukes, A. J. (2008). Information sharing in a channel with partially informed retailers. Marketing Science, 27(4), 642–658.

    Article  Google Scholar 

  • Hsu, V., Lai, G., Niu, B., & Xiao, W. (2017). Leader-based collective bargaining: Cooperation mechanism and incentive analysis. Manufacture & Service Operations Management, 19(1), 72–83.

    Article  Google Scholar 

  • Huang, S., Guan, X., & Chen, Y. (2018). Retailer information sharing with supplier encroachment. Production and Operations Management., 27(6), 1113–1147.

    Article  Google Scholar 

  • Jin, Y., Wu, X., & Hu, Q. (2017). Interaction between channel strategy and store brand decisions. European Journal of Operational Research, 256(3), 911–923.

    Article  Google Scholar 

  • Kong, G., Rajagopalan, S., & Zhang, H. (2013). Revenue sharing and information leakage in a supply chain. Management Science, 59(3), 556–572.

    Article  Google Scholar 

  • Lan, Y., Liu, Z., & Niu, B. (2017). Pricing and design of after-sales service contract: The value of mining asymmetric sales cost information. Asia-Pacific Journal of Operational Research, 34(1), 1740002.

    Article  Google Scholar 

  • Lei, H., Wang, J., Yang, H., & Wan, H. (2020). The impact of ex-post information sharing on a two-echelon supply chain with horizontal competition and capacity constraint. Annals of Operations Research. (forthcoming).

  • Li, L., & Zhang, H. (2008). Confidentiality and information sharing in supply chain coordination. Management Science, 54(8), iv-1527.

    Article  Google Scholar 

  • Liu, J., & Wang, J. (2019). Carrier alliance incentive analysis and coordination in a maritime transport chain based on service competition. Transportation Research Part E: Logistics and Transportation Review, 128, 333–335.

    Article  Google Scholar 

  • Niu, B., Dai, Z., & Zhuo, X. (2019). Co-opetition effect of promised-delivery-time sensitive demand on air cargo carriers’ big data investment and demand signal sharing decisions. Transportation Research Part E: Logistics and Transportation Review, 123, 29–44.

    Article  Google Scholar 

  • Raju, J., & Roy, A. (2000). Market information and firm performance. Management Science, 46(8), 1075–1084.

    Article  Google Scholar 

  • Shen, B., Xu, X., & Guo, S. (2019). The impacts of logistics services on short life cycle products in a global supply chain. Transportation Research Part E: Logistics and Transportation Review, 131, 153–167.

    Article  Google Scholar 

  • Shunko, M., Do, H., & Tsay, A. (2017). Supply chain strategies and international tax arbitrage. Production and Operations Management, 26(2), 231–251.

    Article  Google Scholar 

  • Simatupang, T. M., & Sridharan, R. (2002). The collaborative supply chain. The International Journal of Logistics Management, 13(1), 15–30.

    Article  Google Scholar 

  • Vives, X. (1984). Duopoly information equilibrium: Cournot and Bertrand. Journal of Economic Theory, 34(1), 71–94.

    Article  Google Scholar 

  • Wang, Y., Wallace, S., Shen, B., & Choi, T. (2015). Service supply chain management: A review of operational models. European Journal of Operational Research, 247(3), 685–698.

    Article  Google Scholar 

  • Wang, T., Xing, Z., Hu, H., & Qu, X. (2019). Overbooking and delivery-delay-allowed strategies for container slot allocation. Transportation Research Part E: Logistics and Transportation Review, 122, 433–447.

    Article  Google Scholar 

  • Wang, F., Zhuo, X., & Niu, B. (2017a). Strategic entry to regional air cargo market under joint competition of demand and promised delivery time. Transportation Research Part B: Methodological, 104, 317–336.

    Article  Google Scholar 

  • Wang, F., Zhuo, X., Niu, B., & He, J. (2017b). Who canvasses for cargos? Incentive analysis and channel structure in a shipping supply chain. Transportation Research Part B: Methodological, 97, 78–101.

    Article  Google Scholar 

  • Xu, X., Hao, J., Deng, Y., & Wang, Y. (2017). Design optimization of resource combination for collaborative logistics network under uncertainty. Applied Soft Computing, 56, 684–691.

    Article  Google Scholar 

  • Yu, Y., Xiao, T., & Feng, Z. (2019). Price and cold-chain service decisions versus integration in a fresh agri-product supply chain with competing retailers. Annals of Operations Research, 287, 465–493.

    Article  Google Scholar 

  • Zhang, A., Hui, Y., & Leung, L. (2004). Air cargo alliances and competition in passenger markets. Transportation Research Part E: Logistics and Transportation Review, 40(2), 83–100.

    Article  Google Scholar 

  • Zhao, M., Dong, C., & Cheng, T. (2018). Quality disclosure strategies for small business enterprises in a competitive marketplace. European Journal of Operational Research, 270(1), 218–229.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editors and reviewers for their helpful comments. This work was supported by the Ministry of Science and Technology of China under Grant 2020AAA0108400,2020AAA0108402, NSFC Excellent Young Scientists Fund (No. 71822202), Chang Jiang Scholars Program (Niu Baozhuang 2017), and the Fundamental Research Funds for the Central Universities. The corresponding author is Lei Chen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Table 2.

In Scenario N, the incumbent MC and RC have the accurate demand signal, but the new MC does not have this information. We use backward induction to solve this problem. Note that \( {\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right] = \frac{{{{\upsigma }}_{\mathrm{o}}^{2} {{\Gamma }}_{1} }}{{{{\upsigma }}_{\mathrm{o}}^{2} + {{\upsigma }}_{1}^{2} }} = \frac{{{{\rm{s}\upsigma }}_{\mathrm{o}}^{2} }}{{1 + {\mathrm{s}}}} \) and \( {\mathrm{s}} = \frac{{{{\upsigma }}_{\mathrm{o}}^{2} }}{{{{\upsigma }}_{1}^{2} }} \). We have the supply chain parties’ profit functions as follows, respectively.

$$ {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{R}} \left| {{\Gamma }} \right.} \right] = {\mathrm{E}}\left[ {{\mathrm{w}}\left( {{\mathrm{q}}_{\mathrm{E}} + {\mathrm{q}}_{\mathrm{I}} } \right)\left| {{\Gamma }} \right.} \right]. $$
$$ {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}} \left| {\mathrm{w}} \right.} \right] = {\mathrm{E}}\left[ {\left( {{\mathrm{p}}_{\mathrm{E}} - {\mathrm{w}}} \right){\mathrm{q}}_{\mathrm{E}} \left| {\mathrm{w}} \right.} \right]. $$
$$ {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}} \left| {{\Gamma }} \right.} \right] = {\mathrm{E}}\left[ {\left( {{\mathrm{p}}_{\mathrm{I}} - {\mathrm{w}}} \right){\mathrm{q}}_{\mathrm{I}} \left| {{\Gamma }} \right.} \right]. $$

The new MC and the incumbent MC decide their order sizes simultaneously after observing the RC’s service price.

Remember that the new MC can infer the updated demand signal based on the service price decided by RC. The new MC conjectures the updated demand signal as a linear function of the service price: \( {\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right] = {{\upalpha }}_{0} + {{\upalpha }}_{1} {\mathrm{w}} \). Let \( {\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right] = {\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {\mathrm{w}}} \right] \). Before we substitute this equation to the new MC’s profit function, we explain why the updated demand signal can be restricted to a linear function of \( {\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right] \), which has been widely assumed in previous literature such as Gal-Or et al. (2008), Li and Zhang (2008) and Niu et al. (2019).

Note that \( {\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right] = {{\upalpha }}_{0} + {{\upalpha }}_{1} {\mathrm{w}} \), where \( {{\upalpha }}_{1} > 0 \). Given the RC’s service price, both MCs’ optimal order sizes are:

$$ {\mathrm{q}}_{\mathrm{E}} \left( {\mathrm{w}} \right) = {\mathrm{A}}_{2}^{\mathrm{E}} {\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right] + {\mathrm{A}}_{1}^{\mathrm{E}} {\mathrm{w}} + {\mathrm{A}}_{0}^{\mathrm{E}} ,\;{\mathrm{q}}_{\mathrm{I}} \left( {\mathrm{w}} \right) = {\mathrm{A}}_{2}^{\mathrm{I}} {\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right] + {\mathrm{A}}_{1}^{\mathrm{I}} {\mathrm{w}} + {\mathrm{A}}_{0}^{\mathrm{I}} , $$

where \( {\mathrm{A}}_{\mathrm{i}}^{\mathrm{k}} \) is associated with \( {{\upmu }}_{\mathrm{o}} \;{\mathrm{and}}\;{{\uplambda }} \), \( {\mathrm{k}} \in \left\{ {{\mathrm{E}},{\mathrm{I}}} \right\},\;{\mathrm{i}} \in \left\{ {0,1,2} \right\} \). Substituting \( {\mathrm{q}}_{\mathrm{E}} \left( {\mathrm{w}} \right)\;{\mathrm{and}}\;{\mathrm{q}}_{\mathrm{I}} \left( {\mathrm{w}} \right) \) into the RC’s profit function \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{R}} | {{\Gamma }}} \right] = {\mathrm{E}}[{\mathrm{w}}\left( {{\mathrm{q}}_{\mathrm{E}} + {\mathrm{q}}_{\mathrm{I}} } \right)|{{\Gamma }}] \), we have

$$ {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{R}} | {{\Gamma }}} \right]\left( {\mathrm{w}} \right) = \left[ {\left( {{\mathrm{A}}_{2}^{\mathrm{E}} + {\mathrm{A}}_{2}^{\mathrm{I}} } \right){\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right] + \left( {{\mathrm{A}}_{1}^{\mathrm{E}} + {\mathrm{A}}_{1}^{\mathrm{I}} } \right){\mathrm{w}} + {\mathrm{A}}_{0}^{\mathrm{E}} + {\mathrm{A}}_{0}^{\mathrm{I}} } \right]{\mathrm{w}} . $$

Therefore, the manufacturer cannot use nonlinear functions to decide the optimal service price, and the results will be the same as those without demand signal inference. However, the new MC can infer the demand signal as a linear function of the service price: \( {\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right] = {{\upalpha }}_{0} + {{\upalpha }}_{1} {\mathrm{w}} \). Such a function accounts for the fact that the service price signals the RC’s demand forecast: The RC tends to decide a high (low) service price to signal to the new MC that the demand is high (low).

We substitute this into the new MC’s profit function, and have the optimal order sizes as follows, given the RC’s service price \( {\mathrm{w}} \).

$$ {\mathrm{q}}_{\mathrm{E}} \left( {\mathrm{w}} \right) = \frac{1}{3}\left( { - {\mathrm{w}} + \left( {{{\upalpha }}_{0} + {\mathrm{w\upalpha }}_{1} } \right)\left( { - 1 + 2{{\uplambda }}} \right) + {{\upmu }}_{\mathrm{o}} } \right). $$
$$ {\mathrm{q}}_{\mathrm{I}} \left( {\mathrm{w}} \right) = \frac{1}{6}\left( {{{\upalpha }}_{0} + 3{\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right] - 2{{\upalpha }}_{0} {{\uplambda }} + {\mathrm{w}}\left( { - 2 + {{\upalpha }}_{1} - 2{{\upalpha }}_{1} {{\uplambda }}} \right) + 2{{\upmu }}_{\mathrm{o}} } \right). $$

Substituting \( {\mathrm{q}}_{\mathrm{E}} \;{\mathrm{and}}\;{\mathrm{q}}_{\mathrm{I}} \) into the RC’s profit function, we have

$$ {\mathrm{w}} = \frac{{{{\upalpha }}_{0} - 2{{\upalpha }}_{0} {{\uplambda }} - 4{{\upmu }}_{\mathrm{o}} }}{{ - 8 + {{\upalpha }}_{1} \left( { - 2 + 4{{\uplambda }}} \right)}} - \frac{{3{\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right]}}{{ - 8 + {{\upalpha }}_{1} \left( { - 2 + 4{{\uplambda }}} \right)}}. $$

The service price \( {\mathrm{w}} = \frac{{{{\upalpha }}_{0} - 2{{\upalpha }}_{0} {{\uplambda }} - 4{{\upmu }}_{\mathrm{o}} }}{{ - 8 + {{\upalpha }}_{1} \left( { - 2 + 4{{\uplambda }}} \right)}} - \frac{{3{\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right]}}{{ - 8 + {{\upalpha }}_{1} \left( { - 2 + 4{{\uplambda }}} \right)}} \) is an equilibrium if and only if the new MC’s conjecture is fulfilled. That is

$$ \frac{{{{\upalpha }}_{0} - 2{{\upalpha }}_{0} {{\uplambda }} - 4{{\upmu }}_{\mathrm{o}} }}{{ - 8 + {{\upalpha }}_{1} \left( { - 2 + 4{{\uplambda }}} \right)}} = - \frac{{{{\upalpha }}_{0} }}{{{{\upalpha }}_{1} }}.\; - \frac{{3{\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right]}}{{ - 8 + {{\upalpha }}_{1} \left( { - 2 + 4{{\uplambda }}} \right)}} = \frac{{{\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right]}}{{{{\upalpha }}_{1} }}. $$

The service price \( {\mathrm{w}} = - \frac{{{{\upalpha }}_{0}^{ *} }}{{{{\upalpha }}_{1}^{ *} }} + \frac{{{\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right]}}{{{{\upalpha }}_{1}^{ *} }} \) is an equilibrium in the following sense. As long as the new MC believes the updated demand signal will be the form \( {\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right] = {{\upalpha }}_{0} + {{\upalpha }}_{1} {\mathrm{w}} \), the new MC uses \( {{\upalpha }}_{0} + {{\upalpha }}_{1} {\mathrm{w}} \) to substitute \( {\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right] \) for profit maximization. It is optimal for the RC to set the service price to \( {\mathrm{w}} = - \frac{{{{\upalpha }}_{0}^{ *} }}{{{{\upalpha }}_{1}^{ *} }} + \frac{{{\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right]}}{{{{\upalpha }}_{1}^{ *} }} \). Then we have

$$ {{\upalpha }}_{0} = - \frac{{2{{\upmu }}_{\mathrm{o}} }}{{1 + {{\uplambda }}}}.\;{{\upalpha }}_{1} = \frac{8}{{4{{\uplambda }} + 1}}. $$
$$ {\mathrm{w}}^{\mathrm{N}} = \frac{{\left( {1 + 4{{\uplambda }}} \right){{\upmu }}_{\mathrm{O}} }}{{4\left( {1 + {{\uplambda }}} \right)}} + \frac{{\left( {1 + 4{{\uplambda }}} \right){\mathrm{s\Gamma }}}}{{8\left( {1 + {\mathrm{s}}} \right)}}. $$
$$ {\mathrm{q}}_{\mathrm{E}}^{\mathrm{N}} = \frac{{{{\upmu }}_{\mathrm{O}} }}{{4\left( {1 + {{\uplambda }}} \right)}} + \frac{{\left( {4{{\uplambda }} - 3} \right){\mathrm{s\Gamma }}}}{{8\left( {1 + {\mathrm{s}}} \right)}}. $$
$$ {\mathrm{q}}_{\mathrm{I}}^{\mathrm{N}} = \frac{{{{\upmu }}_{\mathrm{O}} }}{{4\left( {1 + {{\uplambda }}} \right)}} + \frac{{\left( {5 - 4{{\uplambda }}} \right){\mathrm{s\Gamma }}}}{{8\left( {1 + {\mathrm{s}}} \right)}}. $$

Then we derive the Bayesian equilibrium profits: \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{\mathrm{N}} | {{\Gamma }}} \right],\;{\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{R}}^{\mathrm{N}} | {{\Gamma }}} \right] \) and \( {\mathrm{E}}[{{\uppi }}_{\mathrm{I}}^{\mathrm{N}} |{{\Gamma }}] \).

Because \( \epsilon_{\mathrm{o}} \) and \( \epsilon_{1} \) are mutually independent of each other, we have \( {\mathrm{g}}\left( {\epsilon_{\mathrm{o}} ,\epsilon_{1} } \right) = {\mathrm{g}}\left( {\epsilon_{\mathrm{o}} } \right){\mathrm{g}}\left( {\epsilon_{1} } \right) \), where \( {\mathrm{g}}\left( {\epsilon_{\mathrm{o}} } \right) \) is the normal probability density function of \( \epsilon_{\mathrm{o}} \). \( {\mathrm{g}}\left( {\epsilon_{1} } \right) \) is the normal probability density function of \( \epsilon_{1} \), and \( {\mathrm{g}}\left( {\epsilon_{\mathrm{o}} ,\epsilon_{1} } \right) \) is the bi-variate normal probability density function of \( \epsilon_{\mathrm{o}} \) and \( \epsilon_{1} \).

Recall \( {\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right] = \frac{{{{\upsigma }}_{\mathrm{o}}^{2} {{\Gamma }}_{1} }}{{{{\upsigma }}_{\mathrm{o}}^{2} + {{\upsigma }}_{1}^{2} }} \). We have

$$ \mathop \smallint \limits_{ - \infty }^{\infty } \mathop \smallint \limits_{ - \infty }^{\infty } \left( {{\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right]} \right)^{2} {\mathrm{g}}\left( {\epsilon_{\mathrm{o}} ,\epsilon_{1} } \right){\mathrm{d}}\epsilon_{\mathrm{o}} {\mathrm{d}}\epsilon_{1} = \frac{{{{\upsigma }}_{\mathrm{o}}^{4} }}{{{{\upsigma }}_{\mathrm{o}}^{2} + {{\upsigma }}_{1}^{2} }} . $$
$$ \mathop \smallint \limits_{ - \infty }^{\infty } \mathop \smallint \limits_{ - \infty }^{\infty } {\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right]{\mathrm{g}}\left( {\epsilon_{\mathrm{o}} ,\epsilon_{1} } \right){\mathrm{d}}\epsilon_{\mathrm{o}} {\mathrm{d}}\epsilon_{1} = 0 . $$

Therefore, the supply chain parties’ expected profits are specified as

$$ {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{\mathrm{N}} } \right] = \frac{{{{\upmu }}_{\mathrm{O}}^{2} }}{{16\left( {1 + {{\uplambda }}} \right)^{2} }} + \frac{{\left( {3 - 4{{\uplambda }}} \right)^{2} {{\rm{s}\upsigma }}_{\mathrm{O}}^{2} }}{{64\left( {1 + {\mathrm{s}}} \right)}}. $$
$$ {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{\mathrm{N}} } \right] = \frac{{{{\upmu }}_{\mathrm{O}}^{2} }}{{16\left( {1 + {{\uplambda }}} \right)^{2} }} + \frac{{\left( {5 - 4{{\uplambda }}} \right)^{2} {{{\rm{s}}\upsigma }}_{\mathrm{O}}^{2} }}{{64\left( {1 + {\mathrm{s}}} \right)}}. $$
$$ {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{R}}^{\mathrm{N}} } \right] = \frac{{\left( {1 + 4{{\uplambda }}} \right){{\upmu }}_{\mathrm{O}}^{2} }}{{8\left( {1 + {{\uplambda }}} \right)^{2} }} + \frac{{\left( {1 + 4{{\uplambda }}} \right){{{\rm{s}}\upsigma }}_{\mathrm{O}}^{2} }}{{32\left( {1 + {\mathrm{s}}} \right)}}. $$

Different from Scenario N, all the supply chain parties have the updated demand signal in Scenario L. Thus, their conditional expected profit functions are as follows, respectively.

$$ E\left[ {\pi_{R} \left| {{{\Gamma }}\left] { = E} \right[w\left( {q_{E} + q_{I} } \right)} \right|{{\Gamma }}} \right]. $$
$$ E\left[ {\pi_{E} \left| {w\left] { = E} \right[\left( {p_{E} - w} \right)q_{E} } \right|{{\Gamma }}} \right]. $$
$$ E\left[ {\pi_{I} \left| {{{\Gamma }}\left] { = E} \right[\left( {p_{I} - w} \right)q_{I} } \right|{{\Gamma }}} \right]. $$

Similarly, we first derive MCs’ optimal order sizes given the RC’s \( {\mathrm{w}} \), as follows.

$$ {\mathrm{q}}_{\mathrm{E}} \left( w \right) = \frac{1}{3}\left( { - w - {\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right]\left( {1 - 2\lambda } \right) + \mu_{o} } \right). $$
$$ {\mathrm{q}}_{\mathrm{I}} \left( w \right) = \frac{1}{3}\left( { - w + \left( {2 - \lambda } \right){\mathrm{E}}\left[ {\epsilon_{\mathrm{o}} | {{\Gamma }}} \right] + \mu_{o} } \right) $$

Substituting \( q_{E} \left( w \right)\;and\;{\mathrm{q}}_{\mathrm{I}} \left( w \right) \) into the RC’s expected profit \( E[\pi_{R} |{{\Gamma }}] \), we have

$$ w^{L} = \frac{{\mu_{o} }}{2} + \frac{{\left( {1 + \lambda } \right)s{{\Gamma }}}}{{4\left( {1 + s} \right)}}. $$
$$ q_{E}^{L} = \frac{{\mu_{o} }}{6} + \frac{{\left( {7\lambda - 5} \right)s{{\Gamma }}}}{{12\left( {1 + s} \right)}}. $$
$$ q_{I}^{L} = \frac{{\mu_{o} }}{6} + \frac{{\left( {7 - 5\lambda } \right)s{{\Gamma }}}}{{12\left( {1 + s} \right)}}. $$

Similarly, the expected profits of all the supply chain parties are specified as

$$ E\left[ {\pi_{R}^{L} } \right] = \frac{{\mu_{o}^{2} }}{6} + \frac{{\left( {1 + \lambda } \right)^{2} s\sigma_{o}^{2} }}{{24\left( {1 + s} \right)}}. $$
$$ E\left[ {\pi_{E}^{L} } \right] = \frac{{\mu_{o}^{2} }}{36} + \frac{{\left( {5 - 7\lambda } \right)^{2} s\sigma_{o}^{2} }}{{144\left( {1 + s} \right)}}. $$
$$ E\left[ {\pi_{I}^{L} } \right] = \frac{{\mu_{o}^{2} }}{36} + \frac{{\left( {7 - 5\lambda } \right)^{2} s\sigma_{o}^{2} }}{{144\left( {1 + s} \right)}}. $$

Proof of Lemma 2

Comparing the RC’s service prices in two scenarios, we have \( {\mathrm{E}}\left[ {{\mathrm{w}}^{\mathrm{N}} \left] { - {\mathrm{E}}} \right[{\mathrm{w}}^{\mathrm{L}} } \right] = \frac{{\left( {2{{\uplambda }} - 1} \right){{\upmu }}_{\mathrm{o}} }}{{4\left( {1 + {{\uplambda }}} \right)}} \). Subjecting to \( {{\upmu }}_{\mathrm{o}} \in \left( {0, + \infty } \right) \) and \( {{\uplambda }} \in \left( {0, + \infty } \right) \), we know the sign of \( {\mathrm{E}}\left[ {{\mathrm{w}}^{\mathrm{N}} \left] -{{\mathrm{E}}} \right[{\mathrm{w}}^{\mathrm{L}} } \right] \) depends on \( \left( {2{{\uplambda }} - 1} \right) \). Therefore, we have \( {\mathrm{E}}\left[ {{\mathrm{w}}^{\mathrm{N}} } \right] > E\left[ {{\mathrm{w}}^{\mathrm{L}} } \right] {\quad\mathrm{if}}\quad{{ \lambda }} > {{\uplambda }}_{1} \), where \( {{\uplambda }}_{1} = 1 \). Otherwise, we have \( {\mathrm{E}}\left[ {{\mathrm{w}}^{\mathrm{N}} } \right] \le {\mathrm{E}}\left[ {{\mathrm{w}}^{\mathrm{L}} } \right] \). By investigating the first derivative of \( {\mathrm{w}}^{\mathrm{N}} \) and \( {\mathrm{w}}^{\mathrm{L}} \) with respect to \( {{\Gamma }} \), we obtain \( \frac{{\partial {\mathrm{w}}^{\mathrm{N}} }}{{\partial {{\Gamma }}}} = \frac{{{\mathrm{s}}\left( {1 + 4{{\uplambda }}} \right)}}{{8\left( {1 + {\mathrm{s}}} \right)}} > 0,\;and\;\frac{{\partial {\mathrm{w}}^{\mathrm{L}} }}{{\partial {{\Gamma }}}} = \frac{{{\mathrm{s}}\left( {1 + {{\uplambda }}} \right)}}{{4\left( {1 + {\mathrm{s}}} \right)}} > 0 \) for any feasible \( {\mathrm{s}} > 0\;and\;\lambda > 0 \). Therefore, Lemma 2 becomes immediate.

Proof of Lemma 3

Comparing MC’s order sizes in two scenarios, we have \( {\mathrm{E}}\left[ {{\mathrm{q}}_{\mathrm{E}}^{\mathrm{N}} } \right] - {\mathrm{E}}\left[ {{\mathrm{q}}_{\mathrm{E}}^{\mathrm{L}} } \right] = \frac{{\left( {1 - 2{{\uplambda }}} \right){{\upmu }}_{\mathrm{o}} }}{{12\left( {1 + {{\uplambda }}} \right)}} \), and \( {\mathrm{E}}\left[ {{\mathrm{q}}_{\mathrm{I}}^{\mathrm{N}} } \right] - {\mathrm{E}}\left[ {{\mathrm{q}}_{\mathrm{I}}^{\mathrm{L}} } \right] = \frac{{\left( {1 - 2{{\uplambda }}} \right){{\upmu }}_{\mathrm{o}} }}{{12\left( {1 + {{\uplambda }}} \right)}} \). Similar to the proof of Lemma 2, for any feasible \( {{\upmu }}_{\mathrm{O}} > 0\;and\;\lambda > 0 \), we obtain \( {\mathrm{E}}\left[ {{\mathrm{q}}_{\mathrm{E}}^{\mathrm{N}} } \right] > E\left[ {{\mathrm{q}}_{\mathrm{E}}^{\mathrm{L}} } \right]\quad{\mathrm{if}}\quad{{\uplambda }} < {{\uplambda }}_{1} \). Otherwise, we have \( {\mathrm{E}}\left[ {{\mathrm{q}}_{\mathrm{E}}^{\mathrm{N}} } \right] \le {\mathrm{E}}\left[ {{\mathrm{q}}_{\mathrm{E}}^{\mathrm{L}} } \right] \). Similarly, we can prove \( {\mathrm{E}}\left[ {{\mathrm{q}}_{\mathrm{I}}^{\mathrm{N}} } \right] > E\left[ {{\mathrm{q}}_{\mathrm{I}}^{\mathrm{L}} } \right]\;{\mathrm{if}}\;{{\uplambda }} < {{\uplambda }}_{1} \). Otherwise, we have \( {\mathrm{E}}\left[ {{\mathrm{q}}_{\mathrm{I}}^{\mathrm{N}} } \right] \le {\mathrm{E}}\left[ {{\mathrm{q}}_{\mathrm{I}}^{\mathrm{L}} } \right] \).

Proof of Proposition 1

  1. (a)

    Comparing the new MC’s deterministic values in two scenarios, we obtain \( {\mathrm{DV}}_{\mathrm{E}}^{\mathrm{N}} - {\mathrm{DV}}_{\mathrm{E}}^{\mathrm{L}} = \frac{1}{144}\left( {\frac{9}{{\left( {1 + {{\uplambda }}} \right)^{2} }} - 4} \right){{\upmu }}_{\mathrm{o}}^{2} \). It is easy to show that, for any feasible \( {{\upmu }}_{\mathrm{o}} > 0\;and\;\lambda > 0 \), the sign of \( {\mathrm{DV}}_{\mathrm{E}}^{\mathrm{N}} - {\mathrm{DV}}_{\mathrm{E}}^{\mathrm{L}} \) depends on the sign of \( \frac{9}{{\left( {1 + {{\uplambda }}} \right)^{2} }} - 4 \). Therefore, we have \( {\mathrm{DV}}_{\mathrm{E}}^{\mathrm{N}} > D{\mathrm{V}}_{\mathrm{E}}^{\mathrm{L}} \) if \( {{\uplambda }} < {{\uplambda }}_{1} \). Otherwise, we have \( {\mathrm{DV}}_{\mathrm{E}}^{\mathrm{N}} \le {\mathrm{DV}}_{\mathrm{E}}^{\mathrm{L}} \).

  2. (b)

    Similarly, we show \( {\mathrm{DV}}_{\mathrm{I}}^{\mathrm{N}} - {\mathrm{DV}}_{\mathrm{I}}^{\mathrm{L}} = \frac{1}{144}\left( {\frac{9}{{\left( {1 + {{\uplambda }}} \right)^{2} }} - 4} \right){{\upmu }}_{\mathrm{o}}^{2} \), and we have \( {\mathrm{DV}}_{\mathrm{I}}^{\mathrm{N}} > D{\mathrm{V}}_{\mathrm{I}}^{\mathrm{L}} {\mathrm{if \lambda }} < {{\uplambda }}_{1} \). Otherwise, we have \( {\mathrm{DV}}_{\mathrm{I}}^{\mathrm{N}} \le {\mathrm{DV}}_{\mathrm{I}}^{\mathrm{L}} \).

  3. (c)

    Comparing the RC’s deterministic values in two scenarios, we have \( {\mathrm{DV}}_{\mathrm{R}}^{\mathrm{N}} - {\mathrm{DV}}_{\mathrm{R}}^{\mathrm{L}} = - \frac{{\left( {1 - 2{{\uplambda }}} \right)^{2} {{\upmu }}_{\mathrm{o}}^{2} }}{{24\left( {1 + {{\uplambda }}} \right)^{2} }} < 0 \) for any feasible \( {{\upmu }}_{\mathrm{o}} \;{\mathrm{and}}\;{{\uplambda }} \). Then Proposition 1 is proven.

Proofs of Proposition 2 and Proposition 3

Comparing the new MC’ information values in two scenarios, we have \( {\mathrm{IV}}_{\mathrm{E}}^{\mathrm{N}} - {\mathrm{IV}}_{\mathrm{E}}^{\mathrm{L}} = - \frac{{{\mathrm{s}}\left( {19 - 64{{\uplambda }} + 52{{\uplambda }}^{2} } \right){{\upsigma }}_{\mathrm{o}}^{2} }}{{576\left( {1 + {\mathrm{s}}} \right)}} \). It can be shown that,\( {\mathrm{IV}}_{\mathrm{E}}^{\mathrm{N}} > {\mathrm{IV}}_{\mathrm{E}}^{\mathrm{L}} \) depends on a quadratic function of \( {{\uplambda }} \). Solving the function with respect to \( {{\uplambda }} \), we obtain \( {\mathrm{IV}}_{\mathrm{E}}^{\mathrm{N}} > {\mathrm{IV}}_{\mathrm{E}}^{\mathrm{L}} \;{\mathrm{if}}\;{{\uplambda }} \in \left( {{{\uplambda }}_{1} ,{{\uplambda }}_{2} } \right)) \). Otherwise, we have \( {\mathrm{IV}}_{\mathrm{E}}^{\mathrm{N}} \le {\mathrm{IV}}_{\mathrm{E}}^{\mathrm{L}} \). Note that, \( {{\uplambda }}_{2} = \frac{19}{26} \).

Similarly, the comparison result of the incumbent MC’s information values is \( {\mathrm{IV}}_{\mathrm{I}}^{\mathrm{N}} - {\mathrm{IV}}_{\mathrm{I}}^{\mathrm{L}} = \frac{{{\mathrm{s}}\left( {29 - 80{{\uplambda }} + 44{{\uplambda }}^{2} } \right){{\upsigma }}_{\mathrm{o}}^{2} }}{{576\left( {1 + {\mathrm{s}}} \right)}} \). We have \( {\mathrm{IV}}_{\mathrm{I}}^{\mathrm{N}} > I{\mathrm{V}}_{\mathrm{I}}^{\mathrm{L}} \) \( {\mathrm{if}}\;{{\uplambda }} \in \left( {0,{{\uplambda }}_{1} } \right) \cup \left( {{{\uplambda }}_{3} , + \infty } \right) \). Otherwise, we have \( {\mathrm{IV}}_{\mathrm{I}}^{\mathrm{N}} \le {\mathrm{IV}}_{\mathrm{I}}^{\mathrm{L}} \). Note that, \( {{\uplambda }}_{3} = \frac{29}{22} \).

Therefore, the results in Proposition 2 and Proposition 3 are obtained.

Proof of Proposition 4

Comparing the RC’s information values in two scenarios, we have \( {\mathrm{IV}}_{\mathrm{R}}^{\mathrm{N}} - {\mathrm{IV}}_{\mathrm{R}}^{\mathrm{L}} = - \frac{{{\mathrm{s}}\left( {1 - 2{{\uplambda }}} \right)^{2} {{\upsigma }}_{\mathrm{o}}^{2} }}{{96\left( {1 + {\mathrm{s}}} \right)}} < 0 \) for any feasible \( {\mathrm{s}},\;{{\uplambda }}\;{\mathrm{and}}\;{{\upsigma }}_{\mathrm{o}}^{2} \). Thus, the results in Proposition 4 are obtained.

Proof of Proposition 5

It is easy to verify that \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{\mathrm{N}} } \right] - {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{\mathrm{L}} } \right] = \frac{{\left( {1 - 2{{\uplambda }}} \right)\left[ {4\left( {1 + {\mathrm{s}}} \right)\left( {5 + 2{{\uplambda }}} \right){{\upmu }}_{\mathrm{o}}^{2} + {\mathrm{s}}\left( {1 + {{\uplambda }}} \right)^{2} \left( {26{{\uplambda }} - 19} \right){{\upsigma }}_{\mathrm{o}}^{2} } \right]}}{{576\left( {1 + {\mathrm{s}}} \right)\left( {1 + {{\uplambda }}} \right)^{2} }} \). Clearly, we have \( 576\left( {1 + {\mathrm{s}}} \right)\left( {1 + {{\uplambda }}} \right)^{2} > 0 \). Hence, the symbol of \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{\mathrm{N}} } \right] - {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{\mathrm{L}} } \right] \) depends on \( \left( {1 - 2{{\uplambda }}} \right)[4\left( {1 + {\mathrm{s}}} \right)\left( {5 + 2{{\uplambda }}} \right){{\upmu }}_{\mathrm{o}}^{2} + {\mathrm{s}}\left( {1 + {{\uplambda }}} \right)^{2} \left( {26{{\uplambda }} - 19} \right){{\upsigma }}_{\mathrm{o}}^{2} \). When \( \left( {1 - 2{{\uplambda }}} \right) > 0 \), i.e., \( {{\uplambda }} < {{\uplambda }}_{1} \), we have \( \left( {26{{\uplambda }} - 19} \right) < 0 \). Therefore, given \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{\mathrm{N}} } \right] > E\left[ {{{\uppi }}_{\mathrm{E}}^{\mathrm{L}} } \right], \) the inequation \( {\mathrm{s}}\left( {1 + {{\uplambda }}} \right)^{2} \left( {19 - 26{{\uplambda }}} \right){{\upsigma }}_{\mathrm{o}}^{2} < 4\left( {1 + {\mathrm{s}}} \right)\left( {5 + 2{{\uplambda }}} \right){{\upmu }}_{\mathrm{o}}^{2} \) needs to be satisfied. Rewriting it as \( \frac{{{{\upsigma }}_{\mathrm{o}}^{2} }}{{{{\upmu }}_{\mathrm{o}}^{2} }} < \frac{{4\left( {1 + {\mathrm{s}}} \right)\left( {5 + 2{{\uplambda }}} \right)}}{{{\mathrm{s}}\left( {1 + {{\uplambda }}} \right)^{2} \left( {19 - 26{{\uplambda }}} \right)}}, \) where \( \frac{{4\left( {1 + {\mathrm{s}}} \right)\left( {5 + 2{{\uplambda }}} \right)}}{{{\mathrm{s}}\left( {1 + {{\uplambda }}} \right)^{2} \left( {19 - 26{{\uplambda }}} \right)}} > 0 \). Hence, we have \( \frac{{{{\upsigma }}_{\mathrm{o}} }}{{{{\upmu }}_{\mathrm{o}} }} < {{\uptheta }}_{1} \). Note that \( {{\uptheta }}_{1} = 2\sqrt {\frac{{\left( {1 + {\mathrm{s}}} \right)\left( {5 + 2{{\uplambda }}} \right)}}{{{\mathrm{s}}\left( {1 + {{\uplambda }}} \right)^{2} \left( {19 - 26{{\uplambda }}} \right)}}} \).

Similarly, when \( \left( {1 - 2{{\uplambda }}} \right) < 0 \), i.e., \( {{\uplambda }} > {{\uplambda }}_{1} \), we show that \( \left[ {{{\uppi }}_{\mathrm{E}}^{\mathrm{N}} } \right] > E\left[ {{{\uppi }}_{\mathrm{E}}^{\mathrm{L}} } \right] \) requires \( {\mathrm{s}}\left( {1 + {{\uplambda }}} \right)^{2} \left( {19 - 26{{\uplambda }}} \right){{\upsigma }}_{\mathrm{o}}^{2} > 4\left( {1 + {\mathrm{s}}} \right)\left( {5 + 2{{\uplambda }}} \right){{\upmu }}_{\mathrm{o}}^{2} \). Further, when \( \left( {19 - 26{{\uplambda }}} \right) > 0 \), i.e., \( {{\uplambda }} < {{\uplambda }}_{2} , {{\uplambda }}_{2} = \frac{19}{26} \) we obtain \( \frac{{{{\upsigma }}_{\mathrm{o}} }}{{{{\upmu }}_{\mathrm{o}} }} > {{\uptheta }}_{1} \); While \( \left( {19 - 26{{\uplambda }}} \right) < 0 \), we obtain \( \left( {1 - 2{{\uplambda }}} \right)[4\left( {1 + {\mathrm{s}}} \right)\left( {5 + 2{{\uplambda }}} \right){{\upmu }}_{\mathrm{o}}^{2} + {\mathrm{s}}\left( {1 + {{\uplambda }}} \right)^{2} \left( {26{{\uplambda }} - 19} \right){{\upsigma }}_{\mathrm{o}}^{2} < 0 \), i.e., \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{\mathrm{N}} } \right] < E\left[ {{{\uppi }}_{\mathrm{E}}^{\mathrm{L}} } \right] \).

Therefore, we have \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{\mathrm{N}} } \right] > E\left[ {{{\uppi }}_{\mathrm{E}}^{\mathrm{L}} } \right] \) if one of the following conditions occurs,

  1. (a)

    \( {{\uplambda }} < {{\uplambda }}_{1} \) and \( \frac{{{{\upsigma }}_{\mathrm{o}} }}{{{{\upmu }}_{\mathrm{o}} }} < {{\uptheta }}_{1} \);

  2. (b)

    \( {{\uplambda }}_{1} < \lambda < {{\uplambda }}_{2} \) and \( \frac{{{{\upsigma }}_{\mathrm{o}} }}{{{{\upmu }}_{\mathrm{o}} }} > {{\uptheta }}_{1} \). Note that, \( {{\uptheta }}_{1} = 2\sqrt {\frac{{\left( {1 + {\mathrm{s}}} \right)\left( {5 + 2{{\uplambda }}} \right)}}{{{\mathrm{s}}\left( {1 + {{\uplambda }}} \right)^{2} \left( {19 - 26{{\uplambda }}} \right)}}} \).

Otherwise, we have \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{\mathrm{N}} } \right] \le {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{\mathrm{L}} } \right] \). Then, the results in Proposition 5 are obtained.

Proof of Proposition 6

Similarly, when comparing the incumbent MC’s profits, we have \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{\mathrm{L}} } \right] - {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{\mathrm{N}} } \right] = \frac{{\left( {1 - 2{{\uplambda }}} \right)\left[ { - 4\left( {1 + {\mathrm{s}}} \right)\left( {5 + 2{{\uplambda }}} \right){{\upmu }}_{\mathrm{o}}^{2} + {\mathrm{s}}\left( {1 + {{\uplambda }}} \right)^{2} \left( {22{{\uplambda }} - 29} \right){{\upsigma }}_{0}^{2} } \right]}}{{576\left( {1 + {\mathrm{s}}} \right)\left( {1 + {{\uplambda }}} \right)^{2} }} \). Whether \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{\mathrm{L}} } \right] > E\left[ {{{\uppi }}_{\mathrm{I}}^{\mathrm{N}} } \right] \) depends on the symbol of \( \left( {1 - 2{{\uplambda }}} \right)\left[ { - 4\left( {1 + {\mathrm{s}}} \right)\left( {5 + 2{{\uplambda }}} \right){{\upmu }}_{\mathrm{o}}^{2} + {\mathrm{s}}\left( {1 + {{\uplambda }}} \right)^{2} \left( {22{{\uplambda }} - 29} \right){{\upsigma }}_{\mathrm{o}}^{2} } \right] \). We discuss it as follows: when \( \left( {1 - 2{{\uplambda }}} \right) > 0 \), i.e., \( {{\uplambda }} < {{\uplambda }}_{1} \), we obtain \( \left( {1 - 2{{\uplambda }}} \right)\left[ { - 4\left( {1 + {\mathrm{s}}} \right)\left( {5 + 2{{\uplambda }}} \right){{\upmu }}_{\mathrm{o}}^{2} + {\mathrm{s}}\left( {1 + {{\uplambda }}} \right)^{2} \left( {22{{\uplambda }} - 29} \right){{\upsigma }}_{\mathrm{o}}^{2} } \right] < 0 \), that is \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{\mathrm{L}} } \right] < E\left[ {{{\uppi }}_{\mathrm{I}}^{\mathrm{N}} } \right] \). When \( \left( {1 - 2{{\uplambda }}} \right) < 0 \), i.e., \( {{\uplambda }} > {{\uplambda }}_{1} \), we know \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{\mathrm{L}} } \right] > E\left[ {{{\uppi }}_{\mathrm{I}}^{\mathrm{N}} } \right] \) requires \( \left[ { - 4\left( {1 + {\mathrm{s}}} \right)\left( {5 + 2{{\uplambda }}} \right){{\upmu }}_{\mathrm{o}}^{2} + {\mathrm{s}}\left( {1 + {{\uplambda }}} \right)^{2} \left( {22{{\uplambda }} - 29} \right){{\upsigma }}_{\mathrm{o}}^{2} } \right] < 0 \). Clearly, when \( \left( {22{{\uplambda }} - 29} \right) < 0 \), i.e., \( {{\uplambda }} < {{\uplambda }}_{3} \), \( {{\uplambda }}_{3} = \frac{29}{22} \), we have \( \left[ { - 4\left( {1 + {\mathrm{s}}} \right)\left( {5 + 2{{\uplambda }}} \right){{\upmu }}_{\mathrm{o}}^{2} + {\mathrm{s}}\left( {1 + {{\uplambda }}} \right)^{2} \left( {22{{\uplambda }} - 29} \right){{\upsigma }}_{\mathrm{o}}^{2} } \right] < 0 \) and \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{\mathrm{L}} } \right] > E\left[ {{{\uppi }}_{\mathrm{I}}^{\mathrm{N}} } \right] \). When \( \left( {22{{\uplambda }} - 29} \right) > 0 \), i.e., \( {{\uplambda }} > {{\uplambda }}_{3} \), we know \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{\mathrm{L}} } \right] > E\left[ {{{\uppi }}_{\mathrm{I}}^{\mathrm{N}} } \right] \) requires \( {\mathrm{s}}\left( {1 + {{\uplambda }}} \right)^{2} \left( {22{{\uplambda }} - 29} \right){{\upsigma }}_{\mathrm{o}}^{2} < 4\left( {1 + {\mathrm{s}}} \right)\left( {5 + 2{{\uplambda }}} \right){{\upmu }}_{\mathrm{o}}^{2} \), and we obtain \( \frac{{{{\upsigma }}_{\mathrm{o}}^{2} }}{{{{\upmu }}_{\mathrm{o}}^{2} }} < \frac{{4\left( {1 + {\mathrm{s}}} \right)\left( {5 + 2{{\uplambda }}} \right)}}{{{\mathrm{s}}\left( {1 + {{\uplambda }}} \right)^{2} \left( {22{{\uplambda }} - 29} \right)}} \), where \( \frac{{4\left( {1 + {\mathrm{s}}} \right)\left( {5 + 2{{\uplambda }}} \right)}}{{{\mathrm{s}}\left( {1 + {{\uplambda }}} \right)^{2} \left( {22{{\uplambda }} - 29} \right)}} > 0. \) Hence, we have \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{\mathrm{L}} } \right] > E\left[ {{{\uppi }}_{\mathrm{I}}^{\mathrm{N}} } \right] \) if \( {{\uplambda }} > {{\uplambda }}_{3} \) and \( \frac{{{{\upsigma }}_{\mathrm{o}} }}{{{{\upmu }}_{\mathrm{o}} }} < {{\uptheta }}_{2} \). Note that, \( {{\uptheta }}_{2} = 2\sqrt {\frac{{\left( {1 + {\mathrm{s}}} \right)\left( {5 + 2{{\uplambda }}} \right)}}{{{\mathrm{s}}\left( {1 + {{\uplambda }}} \right)^{2} \left( {22{{\uplambda }} - 29} \right)}}} \). The results in Proposition 6 are obtained.

Proof of Proposition 7

Comparing the RC’s expected profits in two scenarios, we have \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{R}}^{\mathrm{N}} } \right] - {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{R}}^{\mathrm{L}} } \right] = - \frac{{\left( {1 - 2{{\uplambda }}} \right)^{2} \left[ {4\left( {1 + {\mathrm{s}}} \right){{\upmu }}_{\mathrm{o}}^{2} + {\mathrm{s}}\left( {1 + {{\uplambda }}} \right)^{2} {{\upsigma }}_{\mathrm{o}}^{2} } \right]}}{{96\left( {1 + {\mathrm{s}}} \right)\left( {1 + {{\uplambda }}} \right)^{2} }} < 0 \) for any feasible \( {\mathrm{s}},{{\uplambda }},{{\upsigma }}_{\mathrm{o}} \;{\mathrm{and}}\;{{\upmu }}_{\mathrm{o}} \).

Therefore, Proposition 7 is proven.

Proof of Extensions

We present the equilibrium outcomes in each extension as follows.

1.1 MCs have their exclusive RC

We obtain the equilibrium outcomes summarized in Table 3.

Table 3 The outcomes and equilibrium profits in each scenario

Proof of Proposition 8

Comparing the new MC and its exclusive profits in two scenarios, we have \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{{{\mathrm{L}}1}} } \right] - {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{{{\mathrm{N}}1}} } \right] = \frac{{4\left( {2 - 7{{\uplambda }}} \right)^{2} {{{\rm{s}}\upsigma }}_{\mathrm{o}}^{2} }}{{2025\left( {1 + {\mathrm{s}}} \right)}} > 0 \), and \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{RE}}^{{{\mathrm{L}}1}} } \right] - {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{RE}}^{{{\mathrm{N}}1}} } \right] = \frac{{2\left( {2 - 7{{\uplambda }}} \right)^{2} {{{\rm{s}}\upsigma }}_{\mathrm{o}}^{2} }}{{675\left( {1 + {\mathrm{s}}} \right)}} > 0 \) for any \( {\mathrm{s}},{{\uplambda }},{{\upsigma }}_{\mathrm{o}} \;{\mathrm{and}}\;{{\upmu }}_{\mathrm{o}} \).

Proof of Proposition 9

Comparing the incumbent MC’ profits in two scenarios, we have \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{{{\mathrm{L}}1}} } \right] - {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{{{\mathrm{N}}1}} } \right] = \frac{{\left( {197 - 3584{{\uplambda }} + 512{{\uplambda }}^{2} } \right){{{\rm{s}}\upsigma }}_{\mathrm{o}}^{2} }}{{64800\left( {1 + {\mathrm{s}}} \right)}} \). Clearly, whether \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{{{\mathrm{L}}1}} } \right] > E\left[ {{{\uppi }}_{\mathrm{I}}^{{{\mathrm{N}}1}} } \right] \) depends on the quadratic function \( 197 - 3584{{\uplambda }} + 512{{\uplambda }}^{2} \) of \( {{\uplambda }} \). Solving the inequality \( 197 - 3584{{\uplambda }} + 512{{\uplambda }}^{2} > 0 \), we obtain \( 0 < \lambda \left<{\frac{1}{32}\left( {112 - 45\sqrt 6 } \right) {\mathrm{and \lambda }}} \right> \frac{1}{32}(112 + 45\sqrt 6 \)). Similarly, comparing the its exclusive RC’s profits, we have \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{RI}}^{{{\mathrm{L}}1}} } \right] - {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{RI}}^{{{\mathrm{N}}1}} } \right] = \frac{{\left( {1111 - 1792{{\uplambda }} + 256{{\uplambda }}^{2} } \right){{{\rm{s}}\upsigma }}_{\mathrm{o}}^{2} }}{{21600\left( {1 + {\mathrm{s}}} \right)}} \). Solving the inequality \( 1111 - 1792{{\uplambda }} + 256{{\uplambda }}^{2} > 0 \), we have \( 0 < \lambda < \frac{11}{16}\;{\mathrm{or}}\;\lambda > \frac{101}{16} \). Therefore, Proposition 9 is proven.

1.2 Impact of logistics disruption

We obtain the equilibrium outcomes in Table 4.

Table 4 The outcomes and equilibrium profits in each scenario

Proof of Proposition 10

Comparing the new MC’s profits in two scenarios, we obtain \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{{{\mathrm{N}}2}} } \right] - {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{{{\mathrm{L}}2}} } \right] = \frac{{\left( {1 - {{\uppsi }}} \right)^{2} \left( {1 - 2{{\uplambda }}} \right)\left[ {4{{\upmu }}_{\mathrm{o}}^{2} \left( {5 - 2{{\uplambda }}\left( { - 1 + {{\uppsi }}} \right) + 3{{\uppsi }}} \right) + \frac{{{{{\rm{s}}\upsigma }}_{\mathrm{o}}^{2} }}{{\left( {1 + {\mathrm{s}}} \right)}}\left( {1 + {{\uplambda }} + {{\uppsi }} - {{\uplambda \uppsi }}} \right)^{2} \left( { - 19 - 5{{\uppsi }} + {{\uplambda }}\left( {26 + 6{{\uppsi }}} \right)} \right)} \right]}}{{64\left( {3 + {{\uppsi }}} \right)^{2} \left( { - 1 - {{\uplambda }} - {{\uppsi }} + {{\uplambda \uppsi }}} \right)^{2} }} \). Clearly, the sign of \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{{{\mathrm{N}}2}} } \right] - {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{{{\mathrm{L}}2}} } \right] \) depends on \( \left( {1 - 2{{\uplambda }}} \right)\left[ {4{{\upmu }}_{\mathrm{o}}^{2} \left( {5 - 2{{\uplambda }}\left( { - 1 + {{\uppsi }}} \right) + 3{{\uppsi }}} \right) + \frac{{{{{\rm{s}}\upsigma }}_{\mathrm{o}}^{2} }}{{\left( {1 + {\mathrm{s}}} \right)}}\left( {1 + {{\uplambda }} + {{\uppsi }} - {{\uplambda \uppsi }}} \right)^{2} \left( { - 19 - 5{{\uppsi }} + {{\uplambda }}\left( {26 + 6{{\uppsi }}} \right)} \right)} \right] \) for any feasible \( {\mathrm{s}},{{\uplambda }},{{\upmu }}_{\mathrm{o}} \;{\mathrm{and}}\;{{\upsigma }}_{\mathrm{o}}^{2} . \) Note that \( \left( {5 - 2{{\uplambda }}\left( { - 1 + {{\uppsi }}} \right) + 3{{\uppsi }}} \right) > 0 \) is always larger than zero for any \( {{\uplambda }} \) and \( {{\uppsi }} \). Similar to Proposition 5, when \( \left( {1 - 2{{\uplambda }}} \right) > 0 \), i.e., \( {{\uplambda }} < {{\uplambda }}_{1} \), we obtain \( - 19 - 5{{\uppsi }} + {{\uplambda }}\left( {26 + 6{{\uppsi }}} \right) < 0. \) Therefore, that \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{{{\mathrm{N}}2}} } \right] > E\left[ {{{\uppi }}_{\mathrm{E}}^{{{\mathrm{L}}2}} } \right] \) requires \( \frac{{{{\upsigma }}_{\mathrm{o}}^{2} }}{{{{\upmu }}_{\mathrm{o}}^{2} }} < \frac{{ - 4\left( {5 - 2{{\uplambda }}\left( { - 1 + {{\uppsi }}} \right) + 3{{\uppsi }}} \right)\left( {1 + {\mathrm{s}}} \right)}}{{{\mathrm{s}}\left( {1 + {{\uplambda }} + {{\uppsi }} - {{\uplambda \uppsi }}} \right)^{2} \left[ { - 19 - 5{{\uppsi }} + {{\uplambda }}\left( {26 + 6{{\uppsi }}} \right)} \right]}} \), where \( \frac{{ - 4\left( {5 - 2{{\uplambda }}\left( { - 1 + {{\uppsi }}} \right) + 3{{\uppsi }}} \right)\left( {1 + {\mathrm{s}}} \right)}}{{{\mathrm{s}}\left( {1 + {{\uplambda }} + {{\uppsi }} - {{\uplambda \uppsi }}} \right)^{2} \left[ { - 19 - 5{{\uppsi }} + {{\uplambda }}\left( {26 + 6{{\uppsi }}} \right)} \right]}} > 0 \). Hence, we have \( \frac{{{{\upsigma }}_{\mathrm{o}} }}{{{{\upmu }}_{\mathrm{o}} }} < {{\uptheta }}_{3} \). Note that \( {{\uptheta }}_{3} = \frac{2}{{\left( {1 + {{\uplambda }} + {{\uppsi }} - {{\uplambda \uppsi }}} \right)}}\sqrt {\frac{{\left[ { - 5 + 2{{\uplambda }}\left( { - 1 + {{\uppsi }}} \right) - 3{{\uppsi }}} \right]\left( {1 + {\mathrm{s}}} \right)}}{{{\mathrm{s}}\left[ { - 19 - 5{{\uppsi }} + {{\uplambda }}\left( {26 + 6{{\uppsi }}} \right)} \right]}}} \).

Similarly, when \( \left( {1 - 2{{\uplambda }}} \right) < 0 \), i.e., \( {{\uplambda }} > {{\uplambda }}_{1} \), \( \left[ {{{\uppi }}_{\mathrm{E}}^{{{\mathrm{N}}2}} } \right] > E\left[ {{{\uppi }}_{\mathrm{E}}^{{{\mathrm{L}}2}} } \right] \) requires \( \frac{{{{{\rm{s}}\upsigma }}_{\mathrm{o}}^{2} }}{{\left( {1 + {\mathrm{s}}} \right)}}\left( {1 + {{\uplambda }} + {{\uppsi }} - {{\uplambda \uppsi }}} \right)^{2} \left( { - 19 - 5{{\uppsi }} + {{\uplambda }}\left( {26 + 6{{\uppsi }}} \right)} \right) < 4{{\upmu }}_{\mathrm{o}}^{2} \left( {5 - 2{{\uplambda }}\left( { - 1 + {{\uppsi }}} \right) + 3{{\uppsi }}} \right) \). Subjecting it into \( {{\uplambda }} > {{\uplambda }}_{1} \;{\mathrm{and}}\;\left( { - 19 - 5{{\uppsi }} + {{\uplambda }}\left( {26 + 6{{\uppsi }}} \right)} \right) < 0 \), we have \( {{\uplambda }}_{1} < \lambda \left< {{{\uplambda }}_{4} ,\;{\mathrm{and}}\;{{\uplambda }}_{4} = \frac{{19 + {{\uppsi }}}}{{26 + {{\uppsi }}}}} \right> {{\uplambda }}_{2} \). Therefore, we obtain the condition of \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{{{\mathrm{N}}2}} } \right] > E\left[ {{{\uppi }}_{\mathrm{E}}^{{{\mathrm{L}}2}} } \right] \): \( {{\uplambda }}_{1} < \lambda \left< {{{\uplambda }}_{4} \;{\mathrm{and}}\;\frac{{{{\upsigma }}_{\mathrm{O}} }}{{{{\upmu }}_{\mathrm{O}} }}} \right> {{\uptheta }}_{3} . \) When \( {{\uplambda }} > {{\uplambda }}_{1} \;{\mathrm{and}}\;\left( { - 19 - 5{{\uppsi }} + {{\uplambda }}\left( {26 + 6{{\uppsi }}} \right)} \right) > 0 \), we obtain \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{\mathrm{N}} } \right] < E\left[ {{{\uppi }}_{\mathrm{E}}^{\mathrm{L}} } \right] \). Therefore, it can be shown that \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{{{\mathrm{N}}2}} } \right] > E\left[ {{{\uppi }}_{\mathrm{E}}^{{{\mathrm{L}}2}} } \right] \) if one of the following conditions occurs:

  1. (a)

    \( {{\uplambda }} < {{\uplambda }}_{1} \) and \( \frac{{{{\upsigma }}_{\mathrm{O}} }}{{{{\upmu }}_{\mathrm{O}} }} < {{\uptheta }}_{3} \);

  2. (b)

    \( {{\uplambda }}_{1} < \lambda < {{\uplambda }}_{4} \) and \( \frac{{{{\upsigma }}_{\mathrm{O}} }}{{{{\upmu }}_{\mathrm{O}} }} > {{\uptheta }}_{3} \).

Proof of Proposition 11

The difference between the incumbent MC’s profits in two scenarios is \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{{{\mathrm{L}}2}} } \right] - {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{{{\mathrm{N}}2}} } \right] = \frac{{\left( {1 - 2{{\uplambda }}} \right)\left( {{{\uppsi }}^{2} - 1} \right)\left\{ {\frac{{{{{\rm{s}}\upsigma }}_{\mathrm{o}}^{2} }}{{\left( {1 + {\mathrm{s}}} \right)}}\left( {1 + {{\uplambda }} + {{\uppsi }} - {{\uplambda \uppsi }}} \right)^{2} \left[ {29 + 2{{\uplambda }}\left( { - 1 + {{\uppsi }}} \right)\left( {11 + 3{{\uppsi }}} \right) - {{\uppsi }}\left( {8 + 5{{\uppsi }}} \right)} \right] + 4{{\upmu }}_{\mathrm{o}}^{2} \left[ {\left( {1 + {{\uppsi }}} \right)\left( {5 + 3{{\uppsi }}} \right) + 2{{\uplambda }}\left( {1 - {{\uppsi }}^{2} } \right)} \right]} \right\}}}{{64\left( {3 + {{\uppsi }}} \right)^{2} \left( { - 1 - {{\uplambda }} - {{\uppsi }} + {{\uplambda \uppsi }}} \right)^{2} }} \). Obviously, we have \( \left( {{{\uppsi }}^{2} - 1} \right) < 0 \), \( \left( {1 + {{\uplambda }} + {{\uppsi }} - {{\uplambda \uppsi }}} \right)^{2} > 0 \), \( \left( {1 + {{\uppsi }}} \right)\left( {5 + 3{{\uppsi }}} \right) + 2{{\uplambda }}\left( {1 - {{\uppsi }}^{2} } \right) > 0 \) and \( 64\left( {3 + {{\uppsi }}} \right)^{2} \left( { - 1 - {{\uplambda }} - {{\uppsi }} + {{\uplambda \uppsi }}} \right)^{2} > 0 \). The symbol of \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{{{\mathrm{L}}2}} } \right] - {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{{{\mathrm{N}}2}} } \right] \) depends on \( \left( {1 - 2{{\uplambda }}} \right)\Big\{ \frac{{{{{\rm{s}}\upsigma }}_{\mathrm{o}}^{2} }}{{\left( {1 + {\mathrm{s}}} \right)}}\left( {1 + {{\uplambda }} + {{\uppsi }} - {{\uplambda \uppsi }}} \right)^{2} \left[ {29 + 2{{\uplambda }}\left( { - 1 + {{\uppsi }}} \right)\left( {11 + 3{{\uppsi }}} \right) - {{\uppsi }}\left( {8 + 5{{\uppsi }}} \right)} \right]\break + 4{{\upmu }}_{\mathrm{o}}^{2} \left[ {\left( {1 + {{\uppsi }}} \right)\left( {5 + 3{{\uppsi }}} \right) + 2{{\uplambda }}\left( {1 - {{\uppsi }}^{2} } \right)} \right] \Big\} \). We discuss it as follows: when \( \left( {1 - 2{{\uplambda }}} \right) < 0 \) and \( \left[ {29 + 2{{\uplambda }}\left( { - 1 + {{\uppsi }}} \right)\left( {11 + 3{{\uppsi }}} \right) - {{\uppsi }}\left( {8 + 5{{\uppsi }}} \right)} \right] > 0 \), i.e., \( {{\uplambda }}_{1} < \lambda < {{\uplambda }}_{5} \), where \( {{\uplambda }}_{5} = \frac{{ - 29 + 8{{\uppsi }} + 5{{\uppsi }}^{2} }}{{ - 22 + 16{{\uppsi }} + 6{{\uppsi }}^{2} }} > {{\uplambda }}_{3} \), we have \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{{{\mathrm{L}}2}} } \right] > E\left[ {{{\uppi }}_{\mathrm{I}}^{{{\mathrm{N}}2}} } \right] \). When \( \left( {1 - 2{{\uplambda }}} \right) < 0 \) and \( \left[ {29 + 2{{\uplambda }}\left( { - 1 + {{\uppsi }}} \right)\left( {11 + 3{{\uppsi }}} \right) - {{\uppsi }}\left( {8 + 5{{\uppsi }}} \right)} \right] < 0 \), i.e., \( {{\uplambda }} > {{\uplambda }}_{5} \), we solve the inequality \( \frac{{{{{\rm{s}}\upsigma }}_{\mathrm{o}}^{2} }}{{\left( {1 + {\mathrm{s}}} \right)}}\left( {1 + {{\uplambda }} + {{\uppsi }} - {{\uplambda \uppsi }}} \right)^{2} \left[ {29 + 2{{\uplambda }}\left( { - 1 + {{\uppsi }}} \right)\left( {11 + 3{{\uppsi }}} \right) - {{\uppsi }}\left( {8 + 5{{\uppsi }}} \right)} \right] + 4{{\upmu }}_{\mathrm{o}}^{2} \left[ {\left( {1 + {{\uppsi }}} \right)\left( {5 + 3{{\uppsi }}} \right) + 2{{\uplambda }}\left( {1 - {{\uppsi }}^{2} } \right)} \right] < 0 \) to satisfy \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{{{\mathrm{L}}2}} } \right] > E\left[ {{{\uppi }}_{\mathrm{I}}^{{{\mathrm{N}}2}} } \right] \), and find that \( \frac{{{{\upsigma }}_{\mathrm{o}}^{2} }}{{{{\upmu }}_{\mathrm{o}}^{2} }} > \frac{{ - 4\left[ {\left( {1 + {{\uppsi }}} \right)\left( {5 + 3{{\uppsi }}} \right) + 2{{\uplambda }}\left( {1 - {{\uppsi }}^{2} } \right)} \right]\left( {1 + {\mathrm{s}}} \right)}}{{{\mathrm{s}}\left( {1 + {{\uplambda }} + {{\uppsi }} - {{\uplambda \uppsi }}} \right)^{2} \left[ {29 + 2{{\uplambda }}\left( { - 1 + {{\uppsi }}} \right)\left( {11 + 3{{\uppsi }}} \right) - {{\uppsi }}\left( {8 + 5{{\uppsi }}} \right)} \right]}} \), where \( {{\uptheta }}_{4} = \frac{{ - 4\left[ {\left( {1 + {{\uppsi }}} \right)\left( {5 + 3{{\uppsi }}} \right) + 2{{\uplambda }}\left( {1 - {{\uppsi }}^{2} } \right)} \right]\left( {1 + {\mathrm{s}}} \right)}}{{{\mathrm{s}}\left( {1 + {{\uplambda }} + {{\uppsi }} - {{\uplambda \uppsi }}} \right)^{2} \left[ {29 + 2{{\uplambda }}\left( { - 1 + {{\uppsi }}} \right)\left( {11 + 3{{\uppsi }}} \right) - {{\uppsi }}\left( {8 + 5{{\uppsi }}} \right)} \right]}} > 0 \). Therefore, Proposition 11 is proven.

Proof of Proposition 12

By comparing the RC’s Profits in two scenarios, we show that \( E\left[ {\pi_{R}^{L2} } \right] > E\left[ {\pi_{R}^{N2} } \right] \). The following proof is similar to that of the Proposition 7. We omit the details here.

1.3 Impact of the RC’s differentiated service prices

We obtain the equilibrium outcomes in Table 5.

Table 5 The outcomes and equilibrium profits in each scenario

Proof of Proposition 13

Comparing the incumbent MC’s profits in two scenarios, we have \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{{{\mathrm{L}}3}} } \right] - {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{{{\mathrm{N}}3}} } \right] = \frac{{\left[ {7 + 4\left( { - 4 + {{\uplambda }}} \right){{\uplambda }}} \right]{{{\rm{s}}\upsigma }}_{\mathrm{o}}^{2} }}{{144\left( {1 + {\mathrm{s}}} \right)}} \). Clearly, the sign of \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{{{\mathrm{L}}3}} } \right] - {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{{{\mathrm{N}}3}} } \right] \) depends on \( \left[ {7 + 4\left( { - 4 + {{\uplambda }}} \right){{\uplambda }}} \right] \), which is a quadratic function of \( {{\uplambda }} \). Solving the inequality \( \left[ {7 + 4\left( { - 4 + {{\uplambda }}} \right){{\uplambda }}} \right] > 0 \), we obtain \( 0 < \lambda < \frac{1}{2} \) or \( {{\uplambda }} > \frac{7}{2} \). Therefore, Proposition 13 is proven.

Proof of Proposition 14

By comparing the profits of the new MC and RC in two scenarios, we have \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{{{\mathrm{L}}3}} } \right] - {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{E}}^{{{\mathrm{N}}3}} } \right] = \frac{{\left( {1 - 2{{\uplambda }}} \right)^{2} {{{\rm{s}}\upsigma }}_{\mathrm{o}}^{2} }}{{36\left( {1 + {\mathrm{s}}} \right)}} > 0 \) and \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{R}}^{{{\mathrm{L}}3}} } \right] - {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{R}}^{{{\mathrm{N}}3}} } \right] = \frac{{\left( {1 - 2{{\uplambda }}} \right)^{2} {{{\rm{s}}\upsigma }}_{\mathrm{o}}^{2} }}{{24\left( {1 + {\mathrm{s}}} \right)}} > 0 \) for any \( {{\uplambda }},{\mathrm{s}}\;{\mathrm{and}}\;{{\upsigma }}_{\mathrm{o}}^{2} \).

1.4 Alternative model of the new MC’s brand image

We obtain the equilibrium outcomes in Table 6.

Table 6 The outcomes and equilibrium profits in each scenario

Proof of Proposition 15

To investigate the new MC’s preference over information leakage, we compare its expected profits in two scenarios, and find that \( E\left[ {\pi_{E}^{N4} } \right] - E\left[ {\pi_{E}^{L4} } \right] = \frac{{\left( { - 21\lambda + 8\upmu_{o} } \right)s\sigma_{o}^{2} }}{{2304\left( {1 + s} \right)}} \). It is easy to verify \( E\left[ {\pi_{E}^{N4} } \right] > E\left[ {\pi_{E}^{L4} } \right] \) if \( \lambda < \frac{{8\upmu_{o} }}{21} \), so Proposition 15 is proven.

Proof of Proposition 16

Comparing the incumbent MC’s profits in two scenarios, we have \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{{{\mathrm{L}}4}} } \right] - {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{{{\mathrm{N}}4}} } \right] = \frac{{41{{\uplambda }}\left( {{{\uplambda }} + 2{{\upmu }}_{\mathrm{o}} } \right) - \frac{{28{{{\rm{s}}\upsigma }}_{\mathrm{o}}^{2} }}{{1 + {\mathrm{s}}}}}}{2304} \). Clearly, the symbol of \( {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{{{\mathrm{L}}4}} } \right] - {\mathrm{E}}\left[ {{{\uppi }}_{\mathrm{I}}^{{{\mathrm{N}}4}} } \right] \) depends on \( 41{{\uplambda }}\left( {{{\uplambda }} + 2{{\upmu }}_{\mathrm{o}} } \right) - \frac{{28{{{\rm{s}}\upsigma }}_{\mathrm{o}}^{2} }}{{1 + {\mathrm{s}}}} \). We discuss it as follows: when \( {{\uplambda }} > 0 \), solving the inequality \( 41{{\uplambda }}\left( {{{\uplambda }} + 2{{\upmu }}_{\mathrm{o}} } \right) - \frac{{28{{{\rm{s}}\upsigma }}_{\mathrm{o}}^{2} }}{{1 + {\mathrm{s}}}} > 0 \), we have \( {{\upsigma }}_{\mathrm{o}}^{2} < \frac{{41{{\uplambda }}\left( {{{\uplambda }} + 2{{\upmu }}_{\mathrm{o}} } \right)\left( {1 + {\mathrm{s}}} \right)}}{{28{\mathrm{s}}}} \). When \( {{\uplambda }} < 0 \) and \( \left( {{{\uplambda }} + 2{{\upmu }}_{\mathrm{o}} } \right) < 0 \), similarly, we have \( {{\upsigma }}_{\mathrm{o}}^{2} < \frac{{41{{\uplambda }}\left( {{{\uplambda }} + 2{{\upmu }}_{\mathrm{o}} } \right)\left( {1 + {\mathrm{s}}} \right)}}{{28{\mathrm{s}}}} \). Thus, Proposition 16 is proven.

Proof of Proposition 17

The difference of \( E\left[ {\pi_{R}^{L4} } \right] - E\left[ {\pi_{R}^{N4} } \right] \) is \( \frac{{3\lambda^{2} + 48\lambda \upmu_{o} + \frac{{12s\sigma_{o}^{2} }}{1 + s}}}{1152} \). It is easy to find that \( E\left[ {\pi_{R}^{L4} } \right] > E\left[ {\pi_{R}^{N4} } \right] \) for any feasible \( \lambda , \upmu_{o} , s \) and \( \sigma_{o}^{2} \), so Proposition 17 is proven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, B., Dai, Z. & Chen, L. Information leakage in a cross-border logistics supply chain considering demand uncertainty and signal inference. Ann Oper Res 309, 785–816 (2022). https://doi.org/10.1007/s10479-020-03866-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03866-4

Keywords

Navigation