Skip to main content
Log in

Polymorphism of the VEGFA Gene and Coronary Artery Disease: Sex Dimorphism in Relationship between the Gene and Disease Predisposition

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Polymorphisms of vascular endothelial growth factor A (VEGFA) gene represent attractive markers for genetic studies of coronary artery disease (CAD). The aim of the study was to investigate relationship between four single nucleotide polymorphisms (SNPs) rs3025039, rs833061, rs3025000 and rs833068 of the VEGFA gene and the risk of CAD in Central Russia. Genotyping of SNPs was done using the MassARRAY-4 system. SNPs rs3025039, rs833061, and rs3025000 were associated with CAD risk solely in men (P = 0.05). Haplotypes H3 (rs833061-T–rs833068-A–rs3025000-T–rs3025039-C) and H2 (rs833061-T–rs833068-G–rs3025000-C–rs3025039-С) were associated with decreased risk of CAD in men, P = 0.01 and P = 0.05, respectively. In contrast, in women, the H4 haplotype (rs833061-C–rs833068-G–rs3025000-C–rs3025039-T) was associated with an increased risk of CAD (P = 0.01). Linkage disequilibrium (LD) analysis between SNPs stratified by sex revealed that the rs833061-T allele was in negative LD with the rs833068-G and rs3025000-C alleles in men and in positive LD in women (P = 2.0 × 10–16), whereas SNP rs3025039 was in a weak positive LD with SNP rs3025039 in men. The miRBase database allowed identifying that the rs3025039-T allele creates a binding site for miRNA hsa-mir-591, which can inhibit the translation of the VEGFA gene by blocking and degrading its DNA transcripts. An analysis of the GTEx portal data showed that haplotypes associated with CAD may affect the expression of the VEGFA gene. For the first time, sex-specific features of linkage disequilibrium between SNPs of VEGFA and their link with coronary artery disease are a subject of interest and require further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kryukov, N.N., Nikolaevskii, E.N., and Polyakov, V.P., Ishemicheskaya bolezn’ serdtsa (sovremennye aspekty kliniki, diagnostiki, lecheniya, profilaktiki, meditsinskoi reabilitatsii, ekspertizy) (Ischemic Heart Disease (Modern Aspects of Clinic, Diagnosis, Treatment, Prevention, Medical Rehabilitation, and Expertise)), Samara, 2010.

  2. Go, A.S., Mozaffarian, D., Roger, V.L., et al., Executive summary: heart disease and stroke statistics—2014 update: a report from the American Heart Association, Circulation, 2014, vol. 129, no. 3, pp. 399—410. https://doi.org/10.1161/01.cir.0000442015.53336.12

    Article  PubMed  Google Scholar 

  3. Mozaffarian, D., Benjamin, E.J., Go, A.S., et al., Heart disease and stroke statistics—2016 update: a report from the American Heart Association, Circulation, 2016, vol. 133, no. 4, pp. e38—360. https://doi.org/10.1161/CIR.0000000000000350

    Article  PubMed  Google Scholar 

  4. Matveeva, S.A., Timely assessment of risk factors for coronary heart disease is the basis for the prevention of its complications, Klin. Med., 2012, vol. 90, no. 11, pp. 19—23.

    CAS  Google Scholar 

  5. Poulter, N., Coronary heart disease is a multifactorial disease, Am. J. Hypertens., 1999, vol. 12, no. 10, part 2, pp. 92S—95S. https://doi.org/10.1016/s0895-7061(99)00163-6

  6. Brown, B.D., Nsengimana, J., Barrett, J.H., et al., An evaluation of inflammatory gene polymorphisms in sibships discordant for premature coronary artery disease: the GRACE-IMMUNE study, BMC Med., 2010, vol. 8, p. 5. https://doi.org/10.1186/1741-7015-8-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tu, Y.C., Ding, H., Wang, X.J., et al., Exploring epistatic relationships of NO biosynthesis pathway genes in susceptibility to CHD, Acta Pharmacol. Sin., 2010, vol. 31, no. 7, pp. 874—880. https://doi.org/10.1038/aps.2010.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Khera, A.V. and Kathiresan, S., Genetics of coronary artery disease: discovery, biology and clinical translation, Nat. Rev. Genet., 2017, vol. 18, no. 6, pp. 331—344. https://doi.org/10.1038/nrg.2016.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gavrilenko, T.I., Ryzhkova, N.A., and Parkhomenko, A.N., Vascular endothelial growth factor in the clinic of internal diseases and its pathogenetic value, Ukr. Kardiol. Zh., 2011, vol. 4, pp. 87—95.

    Google Scholar 

  10. Starostin, I.V., Clinical, laboratory, genetic, and angiographic factors associated with characteristics of collateral blood flow in patients with coronary heart disease, Cand. Sci. (Med.) Dissertation, Moscow: National Medical Research Center of Cardiology, 2015.

  11. Ferrara, N., Vascular endothelial growth factor: basic science and clinical progress, Endocr. Rev., 2004, vol. 25, no. 4, pp. 581—611. https://doi.org/10.1210/er.2003-0027

    Article  CAS  PubMed  Google Scholar 

  12. Wang, Y., Huang, Q., Liu, J., et al., Vascular endothelial growth factor A polymorphisms are associated with increased risk of coronary heart disease: a meta-analysis, Oncotarget, 2017, vol. 8, no. 18, pp. 30539—30551. https://doi.org/10.18632/oncotarget.15546

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ma, W.Q., Wang, Y., Han, X.Q., et al., Association of genetic polymorphisms in vascular endothelial growth factor with susceptibility to coronary artery disease: a meta-analysis, BMC Med. Genet., 2018, vol. 19, no. 1, p. 108. https://doi.org/10.1186/s12881-018-0628-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao, X., Meng, L., Jiang, J., and Wu, X., Vascular endothelial growth factor gene polymorphisms and coronary heart disease: a systematic review and meta-analysis, Growth Factors, 2018, vol. 36, nos. 3—4, pp. 153—163. https://doi.org/10.1080/08977194.2018.1477141

    Article  CAS  PubMed  Google Scholar 

  15. Polonikov, A., V., Ushachev, D.V., and Shestakov, A.M., Gly460Trp polymorphism of the α-adducin gene and predisposition to hypertension: the significance of gene—environmental interactions for the onset of the disease in the Russian population, Kardiologiya, 2011, vol. 51, no. 10, pp. 33—38.

    CAS  PubMed  Google Scholar 

  16. Polonikov, A.V., Solodilova, M.A., Ivanov, V.P., et al., Protective effect of the GLY272SER polymorphism of the GNB3 gene in the development of hypertension and its relationship with environmental risk factors for the disease development, Ter. Arkh., 2011, vol. 83, no. 4, pp. 55—60.

    CAS  PubMed  Google Scholar 

  17. Polonikov, A.V., Ivanov, V.P., and Solodilova, M.A., CYP2E1 gene promoter polymorphism -1293G>C increases the risk of essential hypertension in men with alcohol abuse, Bull. Exp. Biol. Med., 2013, vol. 155, no. 6, pp. 734—737. https://doi.org/10.1007/s10517-013-2239-5

    Article  CAS  PubMed  Google Scholar 

  18. Bushueva, O.Y., Bulgakova, I.V., Ivanov, V.P., et al., Association of flavin monooxygenase gene E158K polymorphism with chronic heart disease risk, Bull. Exp. Biol. Med., 2015, vol. 159, no. 6, pp. 776—778. https://doi.org/10.1007/s10517-015-3073-8

    Article  CAS  PubMed  Google Scholar 

  19. Churilin, M.I., Kononov, S.I., Luneva, Y.V., et al., Polymorphisms of intracellular cholesterol transporters genes: relationship to blood lipid levels, carotid intima-media thickness, and the development of coronary heart disease, Russ. J. Genet., 2020, vol. 56, no. 2, pp. 234—241. https://doi.org/10.1134/S1022795420020040

    Article  CAS  Google Scholar 

  20. Ponomarenko, I.V., Selection of polymorphic loci for the analysis of associations in genetic and epidemiological studies, Research Result. Medicine and Pharmacy, 2018, vol. 4, pp. 40—54. http://rrmedicine.ru/en/journal/annotation/1420/.

    Article  Google Scholar 

  21. Solé, X., Guinó, E., Valls, J., et al., SNPStats: a web tool for the analysis of association studies, Bioinformatics, 2006, vol. 22, no. 15, pp. 1928—1929. https://doi.org/10.1093/bioinformatics/btl268

    Article  CAS  PubMed  Google Scholar 

  22. Jeffreys, A.J., Kauppi, L., and Neumann, R., Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex, Nat. Genet., 2001, vol. 29, no. 2, pp. 217—222. https://doi.org/10.1038/ng1001-217

    Article  CAS  PubMed  Google Scholar 

  23. Bhérer, C., Campbell, C.L., and Auton, A., Refined genetic maps reveal sexual dimorphism in human meiotic recombination at multiple scales, Nat. Commun., 2017, vol. 8, p. 14994. https://doi.org/10.1038/ncomms14994

    Article  PubMed  PubMed Central  Google Scholar 

  24. Davis, C.A., Hitz, B.C., Sloan, C.A., et al., The Encyclopedia of DNA elements (ENCODE): data portal update, Nucleic Acids Res., 2018, vol. 46, no. D1, pp. D794—D801. https://doi.org/10.1093/nar/gkx1081

    Article  CAS  PubMed  Google Scholar 

  25. Al-Habboubi, H.H., Sater, M.S., Almawi, A.W., et al., Contribution of VEGF polymorphisms to variation in VEGF serum levels in a healthy population, Eur. Cytokine Network, 2011, vol. 22, no. 3, pp. 154—158. https://doi.org/10.1684/ecn.2011.0289

    Article  CAS  Google Scholar 

  26. Griffiths-Jones, S., Grocock, R.J., van Dongen, S., et al., miRBase: microRNA sequences, targets and gene nomenclature, Nucleic Acids Res., 2006, vol. 34, pp. 140—144. https://doi.org/10.1093/nar/gkj112

    Article  CAS  Google Scholar 

  27. Liu, H., Tao, Y., Chen, M., et al., 17β-Estradiol promotes angiogenesis of rat cardiac microvascular endothelial cells in vitro, Med. Sci. Monit., 2018, vol. 24, pp. 2489—2496. https://doi.org/10.12659/msm.903344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sucharov, C.C., Kao, D.P., Port, J.D., et al., Myocardial microRNAs associated with reverse remodeling in human heart failure, JCI Insight, 2017, vol. 2, no. 2. e89169. https://doi.org/10.1172/jci.insight.89169

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gerhardt, H., Golding, M., Fruttiger, M., et al., VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia, J. Cell. Biol., 2003, vol. 161, no. 6, pp. 1163—1177. https://doi.org/10.1083/jcb.200302047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lawton, J.S., Sex and gender differences in coronary artery disease, Semin. Thorac. Cardiovasc. Surg., 2011, vol. 23, no. 2, pp. 126—130. https://doi.org/10.1053/j.semtcvs.2011.07.006

    Article  PubMed  Google Scholar 

  31. Bakhshaliev, A.B., Optimization of hypertension therapy using diagnostic tests and differentiated use of pharmacological and non-pharmacological methods of treatment, Extended Abstract of Doctoral Dissertation, 1st Mosk. Med. Inst. im. I.M. Sechenova, 1990.

  32. Mendelsohn, M.E. and Karas, R.H., Molecular and cellular basis of cardiovascular gender differences, Science, 2005, vol. 308, pp. 1583—1587. https://doi.org/10.1126/science.1112062

    Article  CAS  PubMed  Google Scholar 

  33. Applanat, M.P., Buteau-Lozano, H., Herve, M.A., and Corpet, A., Vascular endothelial growth factor is a target gene for estrogen receptor and contributes to breast cancer progression, Adv. Exp. Med. Biol., 2008, vol. 617, pp. 437—444. https://doi.org/10.1007/978-0-387-69080-3_42

    Article  CAS  PubMed  Google Scholar 

  34. Dadiani, M., Seger, D., Kreizman, T., et al., Estrogen regulation of vascular endothelial growth factor in breast cancer in vitro and in vivo: the role of estrogen receptor alpha and c-Myc, Endocr. Relat. Cancer, 2009, vol. 16, no. 3, pp. 819—834. https://doi.org/10.1677/ERC-08-0249

    Article  CAS  PubMed  Google Scholar 

  35. Jesmin, S., Sakuma, I., Hattori, Y., and Kitabatake, A., Regulatory molecules for coronary expressions of VEGF and its angiogenic receptor KDR in hypoestrogenic middle-aged female rats, Mol. Cell. Biochem., 2004, vol. 259, nos. 1—2, pp. 189—196. https://doi.org/10.1023/b:mcbi.0000021372.99727.b3

    Article  CAS  PubMed  Google Scholar 

  36. Morales, D.E., McGowan, K.A., Grant, D.S., et al., Estrogen promotes angiogenic activity in human umbilical vein endothelial cells in vitro and in a murine model, Circulation, 1995, vol. 91, no. 3, pp. 755—763. https://doi.org/10.1161/01.cir.91.3.755

    Article  CAS  PubMed  Google Scholar 

  37. Pare, G., Krust, A., Karas, R.H., et al., Estrogen receptor-alpha mediates the protective effects of estrogen against vascular injury, Circ. Res., 2002, vol. 90, no. 10, pp. 1087—1092. https://doi.org/10.1161/01.res.0000021114.92282.fa

    Article  CAS  PubMed  Google Scholar 

  38. Peña, J.M. and Min, J.K., Coronary artery disease: sex-related differences in CAD and plaque characteristics, Nat. Rev. Cardiol., 2016, vol. 13, no. 6, pp. 318—319. https://doi.org/10.1038/nrcardio.2016.75

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was carried out at the expense of the budgetary funds of Kursk State Medical University of the Ministry of Health of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Medvedeva or A. V. Polonikov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in human research comply with the ethical standards of the institutional and/or national committee on research ethics and the 1964 Declaration of Helsinki and its subsequent amendments or comparable standards of ethics.

Informed voluntary consent was obtained from each of the participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedeva, M.V., Solodilova, M.A., Bykanova, M.A. et al. Polymorphism of the VEGFA Gene and Coronary Artery Disease: Sex Dimorphism in Relationship between the Gene and Disease Predisposition. Russ J Genet 56, 1512–1519 (2020). https://doi.org/10.1134/S1022795420120108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420120108

Keywords:

Navigation