Skip to main content

Advertisement

Log in

An Optimized IR-UWB Communication System with Interference Reduction on a Narrowband System Using Genetic Algorithm

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper proposed a new impulse radio ultra wideband (IR-UWB) signal to reduce interference on narrowband systems at high usage 5.2 GHz frequency. The combination of 4th and 5th order derivatives of Gaussian pulses were employed to generate the signal so that satisfy the US Federal Communications Commission (FCC) mask. The genetic algorithm technique was used to find the pulse optimized parameters. In this paper, spectrum was optimized by changing the shape factor (sigma) and amplitude of Gaussian pulses so that the transmitted power spectrum density was minimized at a frequency of 5.2 GHz and maximized at the other frequencies from 3.1 to 10.6 GHz according to the FCC mask. The signal was applied in an IR-UWB transceiver system with binary-phase shift keying modulation. The IR-UWB waveform is generated by a programmable digital to analog based circuit. The proposed system was compared with conventional IR-UWB systems at the same condition. The simulation results in multipath channel showed that the proposed system not only reduced interference with the narrowband system, but also this was robust against narrowband interference at 5.2 GHz frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Oppermann, I., Hämäläinen, M., & Iinatti, J. (2004). UWB theory and applications. London: Wiley.

    Book  Google Scholar 

  2. Federal Communications Commission, Revision of Part 15 of the commission’s rules regarding ultra-wideband transmission systems. (2002). FCC, Washington DC.

  3. Vashistha, A., & Law, C. L. (2020). A novel E-DTDOA based one-way ranging using UWB-IR with unsynchronized anchors. IEEE Transactions on Industrial Informatics, 17(2), 1274–1286.

    Article  Google Scholar 

  4. Sidorenko, J., Schatz, V., Scherer-negenborn, N., Arens, M., & Hugentobler, U. (2019). Error corrections for ultra-wideband ranging. IEEE Transactions on Instrumentation and Measurement, 14(8), 1–12.

    Google Scholar 

  5. Zhang, Y., Tan, X., & Zhao, C. (2020). UWB/INS integrated pedestrian positioning for robust indoor environments. IEEE Sensors Journal, 20(23), 14401–14409.

    Article  Google Scholar 

  6. Feng, D., Wang, C., He, C., Zhuang, Y., & Xia, X. (2020). Kalman filter based integration of IMU and UWB for high-accuracy indoor positioning and navigation. IEEE Internet of Things Journal, 7(4), 3133–3146.

    Article  Google Scholar 

  7. Vispa, A., et al. (2019). UWB device for breast microwave imaging: Phantom and clinical validations. Measurement, 146, 582–589.

    Article  Google Scholar 

  8. Cheng, Q., Liu, Y., Zhang, H., & Hao, Y. (2020). A generic spiral MIMO array design method for short-range UWB imaging. IEEE Antennas and Wireless Propagation Letters, 19(5), 851–855.

    Article  Google Scholar 

  9. Ray, K. P., & Thakur, S. S. (2019). Modified trident UWB printed monopole antenna. Wireless Personal Communications, 109(3), 1689–1697.

    Article  Google Scholar 

  10. Kim, S. G., Ko, I. C., Jung, S. H., Custom-ic, G., Korea, R. O. (2020). High resolution CMOS IR-UWB radar for non-contact human vital signs detection. In IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

  11. Batur, O. Z., Gunhan, D., Mutla, K. (2018). An ultra-low power configurable IR-UWB transmitter in 130 nm CMOS. Analog Integrated Circuits and Signal Processing, 59(2), 701–705.

    Google Scholar 

  12. Wei, B., Chen, T., Lu, C., Xu, W., Zhang, Y., & Wei, X. (2019). An all-digital frequency tunable IR-UWB transmitter with an approximate 15th derivative Gaussian pulse generator. Integration, 69, 301–308.

    Article  Google Scholar 

  13. Gunturi, P., & Kotecki, D. E. (2018). Analysis and implementation of a Gaussian addition IR-UWB transmitter for increased spectral efficiency. Wireless Personal Communications, 102, 437–448.

    Article  Google Scholar 

  14. Schmickl, S., Faseth, T., & Pretl, H. (2020). An RF-energy harvester and IR-UWB transmitter for ultra-low- power battery-less biosensors. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(5), 1459–1468.

    Article  Google Scholar 

  15. Taki, H., Mansour, A., Nasser, A., Yao, K. (2019). On optimizing the performance of impulse radio pulse position modulation based on UWB Gaussian pulse derivatives. In 2019 Fourth international conference on advances in computational tools for engineering applications (ACTEA).

  16. Darif, A., Chaibi, H., Saadane, R. (2019). Energy optimization of SWIMAC for WSN based on IR-UWB in smart cities by using network coding. In Proceedings of the 4th international conference on smart city applications.

  17. Khalesi, H., Nabavi, A., & Mirzakouchaki, S. (2015). A very low complexity IR-UWB transmitter with BPSK modulation for balanced antenna. IEEJ Transactions on Electrical and Electronic Engineering, 10, 144–148.

    Article  Google Scholar 

  18. Da-Toh, W., Zheng, Y., & Heng, C. H. (2012). Low power digital baseband for impulse radio ultra-wideband transceiver. Circuits, Systems, and Signal Processing, 31, 223–235.

    Article  MathSciNet  Google Scholar 

  19. Taki, H., Mansour, A., Azou, S., Nasser, A., Yao, K. (2020). Pulse parity modulation for impulse radio UWB transmission based on non-coherent detection. Physical Communication, 40, 101061.

    Article  Google Scholar 

  20. Sheng, H., Orlik, P., Haimovich, A. M., Cimini, L. J., Zhang, J. (2003). On the spectral and power requirements for ultra-wideband transmission. In IEEE international conference on communications.

  21. Amini, A., Mohajerin, P., Ghavami, M., & Marvasti, F. (2019). UWB orthogonal pulse design using Sturm–Liouville boundary value problem. Signal Processing, 159, 147–158.

    Article  Google Scholar 

  22. Khalesi, H., & Ghods, V. (2019). QPSK modulation scheme based on orthogonal Gaussian. Journal of Circuits, Systems and Computers, 28(1), 1950008.

    Article  Google Scholar 

  23. Li, Z., Yin, C., Zhu, X. (2019). Compact UWB MIMO vivaldi antenna with dual band-notched characteristics. IEEE Access, 7, 38696–38701.

    Article  Google Scholar 

  24. Rahman, U., Cao, Q., Li, Y., Yi, W. (2019). Design of tri-notched UWB antenna based on elliptical and circular ring resonators. International Journal of RF and Microwave Computer‐Aided Engineering, 29(3), e21648.

    Article  Google Scholar 

  25. Zavjalov, S. V., Tropkina, I. A., Boxiong, H., & Dong, G. (2019). Avoidance of narrowband interference in UWB wireless sensor device using square low technology. Journal of Physics: Conference Series, 1326(1), 012042. https://doi.org/10.1088/1742-6596/1326/1/012042.

    Article  Google Scholar 

  26. Shaheen, E. M. (2020). Performance of UWB communication systems in presence of perfect/imperfect power control MAI and IEEE802.11a interference. International Journal of Wireless and Mobile Computing, 18(1), 31–39.

    Article  Google Scholar 

  27. Mir-Moghtadaei, V, Jalili, A., Fotowat-Ahmady, A., Nezhad, A. Z., Hedayati, H. (2010). A new UWB pulse generator for narrowband interference avoidance. In 15th IEEE Mediterranean electrotechnical conference.

  28. Wu, Z., Shim, Y., & Rais-zadeh, M. (2012). Miniaturized UWB filters integrated with tunable notch filters using a silicon-based integrated. IEEE Transactions on Microwave Theory and Techniques, 60(3), 518–527.

    Article  Google Scholar 

  29. Wu, C., Jiang, G., Zhu, H. (2008). SSA realization for spectrum shaping and NBI suppression in cognitive UWB radios. In IEEE international conference on microwave and millimeter wave technology.

  30. Xin, L., Premkumar, A. B., Member, S., Madhukumar, A. S., Member, S. (2007). Jitter resistant ultra wideband pulse generation based on wavelet. In IEEE international conference on ultra-wideband.

  31. Xu, S., Bai, Z., Yang, Q., & Kwak, K. S. (2007). Application of SVD on suppression of IEEE 802.11a interference in TH-PAM UWB systems. ETRI Journal, Wiley, 29(2), 237–239.

    Article  Google Scholar 

  32. Sadeghpour, R., & Nabavi, A. (2009). Design and generation of UWB waveforms with interference elimination on narrow band systems. IEICE Electronics Express, 6(13), 923–929.

    Article  Google Scholar 

  33. Wu, X., Member, S., Tian, Z., Davidson, T. N., & Giannakis, G. B. (2006). Optimal waveform design for UWB radios. IEEE Transactions on Signal Processing, 54(6), 2009–2021.

    Article  Google Scholar 

  34. Liao, S.-H., Ho, M.-H., Chen, C.-H., Chiu, C.-C., Chung, W.-C. (2009) A novel DS-UWB pulses design using genetic algorithm. In International conference on future computer and communication.

  35. Xiong, H. (2017). An efficient narrowband interference suppression approach in ultra-wideband receiver. IEEE Sensors Journal, 17(9), 2741–2748.

    Article  Google Scholar 

  36. Zeng, D., Zaghloul, A. I., Annamalai, Jr., A. (2005). Pulse shaping optimizer in UWB receivers. In IEEE antennas and propagation society international symposium.

  37. Gezici, S., Chiang, M., Poor, H. V., Kobayashi, H. (2005). A genetic algorithm based finger selection scheme for UWB MMSE rake receivers. In IEEE international conference on ultra-wideband.

  38. Gezici, S., Poor, H. V., Kobayashi, H. (2005). Optimal and suboptimal finger selection algorithms for MMSE rake receivers in impulse radio ultra-wideband systems. In IEEE wireless communications and networking conference.

  39. Hu, B., & Beaulieu, N. C. (2005). Pulse shapes for ultra wideband communication systems. IEEE Transactions on wireless communications, 4(4), 1789–1797.

    Article  Google Scholar 

  40. Parr, B., Cho, B., Wallace, K., & Ding, Z. (2003). A novel ultra-wideband pulse design algorithm. IEEE Communications Letters, 7(5), 219–221.

    Article  Google Scholar 

  41. Carr, J. (2014). An introduction to genetic algorithms. Senior Project (Scientific Reports). 1–40.

  42. Choobkar, S., & Nabavi, A. (2007). A low power programmable CMOS circuit for generating modulated pulses for UWB applications. In The 2nd international conference on wireless broadband and ultra wideband communications (AusWireless 2007).

  43. Saleh, A., & Valenzuela, R. (1987). A statistical. Model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications, 5(2), 128–137.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Khalesi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalesi, H., Ghods, V. An Optimized IR-UWB Communication System with Interference Reduction on a Narrowband System Using Genetic Algorithm. Wireless Pers Commun 118, 447–460 (2021). https://doi.org/10.1007/s11277-020-08023-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-08023-5

Keywords

Navigation