Skip to main content
Log in

Potential Eco-friendly Application of Sugarcane Bagasse Ash in the Rubber Industry

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Inorganic fillers (mainly obtained from residue recycling/reuse operations) have been widely used as an alternative reinforcement in polymer composites to replace commercial silica. In this study, we analyze the interaction between Sugarcane Bagasse Ash (SCBA) and natural rubber using Bis[3-(triethoxysilyl)propyl] Tetrasulfide (TESPT) as the silane coupling agent and Tetramethylthiuram Disulfide (TMTD) as the curing alternative system. Based on the results, we were able to validate their influence on the physical properties of the obtained composites. In particular, the coupling agent used in this study led to an improved interaction between SCBA and the polymer matrix, which was corroborated by the resulting mechanical response (stress–strain tests) and DMA (tensile strength) characterizations. Therefore, these findings encourage further research to explore a process at the industrial level to reuse SCBA waste and, thus, contribute to the protection of the environment.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rainho Teixeira, S., Arenales, A., de Souza, A.E., da Silva Magalhães, R., Vilche Peña, A.F., Aquino, D., Freire, R.: Sugarcane bagasse: applications for energy production and ceramic materials. J. Solid Waste Technol. Manag. (2015). https://doi.org/10.5276/JSWTM.2015.229

    Article  Google Scholar 

  2. Guo, H., Jerrams, S., Xu, Z.C., Zhou, Y., Jiang, L., Zhang, L., Liu, L., Wen, S.: Enhanced fatigue and durability of carbon black/natural rubber composites reinforced with graphene oxide and carbon nanotubes. Eng. Fract. Mech. (2019). https://doi.org/10.1016/j.engfracmech.2019.106764

    Article  Google Scholar 

  3. Omnes, B., Thuillier, S., Pilvin, P., Grohens, Y., Gillet, S.: Effective properties of cabon black filled natural rubber: experiments and modeling. Compos. Part A. 39, 1141–1149 (2008)

    Google Scholar 

  4. Chan, C.H., Joy, J., Maria, H. J., Thomas, S.: An overview of common fillers used in NR composites. Natural Rubbers Materials, Composites and Nanocomposites. Cambridge, The Royal Society of Chemistry. 2: 13–33 (2014)

  5. Zafarmehrabian, R., Taghvaei, S.: The effects of silica/carbon black ratio on the dynamic properties of the tread compounds in truck tires. E-J. Chem. 9, 1102–1112 (2012)

    Google Scholar 

  6. da Rocha, E.B.D., Batista, M.R., Linhares, F.N., da Silva, A.L.N., Delpech, M.C., de Sousa, A.M.F., Furtado, C.R.G.: Cyclic uniaxial stress-strain test and rheological behavior of carbon black/metakaolin dual-filler system used in nitrile rubber compounds. Polym. Test. 77, 105906 (2019)

    Google Scholar 

  7. Hussein, M.: Effects of strain rate and temperature on the mechanical behavior of carbon black reinforced elastomers based on butyl rubber and high molecular weight polyethylene. Results Phys. 9, 511–517 (2018)

    Google Scholar 

  8. Jong, L.: Improved mechanical properties of silica reinforced rubber with natural polymer. Polym. Test. 79, 106009 (2019)

    Google Scholar 

  9. Prasertsri, S., Rattanasom, N.: Mechanical and damping properties of silica/natural rubber composites prepared from latex system. Polym. Test. 30, 515–526 (2011)

    Google Scholar 

  10. Liu, D., Song, L., Song, H., Chen, J., Tian, Q., Chen, L., Sun, G.: Correlation between mechanical properties and microscopic structures of an optimized silica fraction in silicone rubber. Compos. Sci. Technol. 165, 373–379 (2018)

    Google Scholar 

  11. Xiao, Y., Zou, H., Zhang, L., Ye, X., Han, D.: Surface modification of silica nanoparticles by a polyoxyethylene sorbitan and silane coupling agent to prepare high-performance rubber composites. Polym. Test.. 81, 106195 (2020)

    Google Scholar 

  12. dos Santos, R.J., et al.: Sugarcane bagasse ash: new filler to natural rubber composite. Polímeros 24, 646–653 (2014)

    Google Scholar 

  13. Lakshmi, S., Avti, P.K., Hegde, G.: Activated carbon nanoparticles from biowaste as new generation antimicrobial agents: a review. Nano-Struct. Nano-Object. 1, 306–321 (2018)

    Google Scholar 

  14. Zheng, J., Han, D., Ye, X., Wu, X., Wu, Y., Wang, Y., Zhang, L.: Chemical and physical interaction between silane coupling agent with long arms and silica and its effect on silica/natural rubber composites. Polymer 135, 200–210 (2018)

    Google Scholar 

  15. Witsut, K.: Rolle of difference functionalities in silane coupling agents natural_rubber_compounds. pp. 80–90. https://ris.utwente.nl/ws/portalfiles/portal/6062004/thesis_W_Kaewsakul.pdf (2013). Accessed 3 Nov 2020

  16. Worathanakul, P., Payubnop, W., Muangpet, A.: Characterization for post-treatment effect of bagasse ash for silica extraction. World Acad. Sci. Eng. Technol. 32, 334–345 (2009)

    Google Scholar 

  17. Gary, H.: Materials and Compounds. Engineering with Rubber. Hanser, Ohio (1973)

    Google Scholar 

  18. Dimzoski, B., Bogoeva, G., Gentile, G., Avella, M., Grozdanova, A.: Polypropylene-based eco-composites filled with agricultural rice hulls waste. Chem. Biochem. Eng. 23, 225–230 (2009)

    Google Scholar 

  19. Chee, S.S., Jawaid, M., Sultan, M.T.H., Alothman, O.Y., Abdullah, L.C.: Thermomechanical and dynamic mechanical properties of bamboo/woven kenaf mat reinforced epoxy hybrid composites. Compos. B 163, 165–174 (2019)

    Google Scholar 

  20. Pongdong, W., Kummerlöwe, C., Vennemann, N., Thitithammawong, A., Nakason, C.: Property correlations for dynamically cured rice husk ash filled epoxidized natural rubber/thermoplastic polyurethane blends: Influences of RHA loading. Polym. Test. 53, 245–256 (2016)

    Google Scholar 

  21. da Costa, H.M., Visconte, L.L.Y., Nunes, R.C.R.: Cinética de Vulcanização de composições de borracha natural. com incorporação de cinza de casca de arroz. Polimeros 13, 102–106 (2003)

    Google Scholar 

  22. Muriandy, K., Ismail, H., Otham, N.: Effect of partial replacement of rattan powder by comercial fillers on the properties of natural rubbers composites. Bio Resour. 7(4), 4640–4657 (2012)

    Google Scholar 

  23. Sanchez, E.: Compósito de resina de poliéster insaturado com bagaço da cana de açúcar; influenza do tratamento das fibras nas propriedades. Polímeros 20, 194–200 (2010)

    Google Scholar 

  24. Santos, M.: Estudo das condicoes de estocagem de bagaco de cana de acucar por analise termica. Quim. Nova 34, 507–511 (2011)

    Google Scholar 

  25. Sales, A., Lima, E.: Use of brazilian sugarcane bagase ash in concret as sand remplazement. Waste Manag. (2010). https://doi.org/10.1016/j.wasman.2010.01.026

    Article  Google Scholar 

  26. Mcrowell R., Saradi A.R., Caufield, D.F.: Utilization of natural fibers in platic composites: problems and oportunities. Lignocellulosics Plastics Composites. pp. 29–31. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.463.7226&rep=rep1&type=pdf (1997). Accessed 3 Nov 2020.

  27. Faria, K., Holanda, J.: Incorporation of sugar bagasse ash waste as an alternative raw material for red ceramic. Cerámica 59, 473–480 (2013)

    Google Scholar 

  28. de Paula, M.: Potencial da cinza do bagaço da cana-de-açúcar como material de substituição parcial de cimento Portland. Rev. Bras. Ing. Agric. Ambient. 13(3), 353–357 (2009)

    Google Scholar 

  29. Cordeiro, G.: Caracterização do bagaço de cana-de-açúcar para emprego como pozolana em materiais cimentícios. Quim. Nova 32, 8–86 (2009)

    Google Scholar 

  30. Sombatsompop, S., Thongsang, S., Bangkok, N.: Effect of filler surface treatment on properties of fly Ash/Nr Blends. Society of Plastics Engineers Annual Technical Conference 2005: Conference Proceedings. Boston, Massachusetts, USA. Antec, pp 3278–3282 (2005)

  31. Santos, R.J.D., Agostini, D.L.D.S., Cabrera, F.C., Ruiz, M.R., Teixeira, S.R., Job, A.E.: Sugarcane bagasse ash: new filler to natural rubber composite. Polímeros 24, 646–653 (2014)

    Google Scholar 

  32. Kanking, S., Niltui, P., Wimolmala, E., Sombatsompop, N.: Use of bagasse fiber ash as secondary filler in silica or carbon black filled. Mater. Des. 41, 74–82 (2012)

    Google Scholar 

  33. Scuracchio, C.H., Zanchet, A., Demori, R., de Souza, F.D.B., Ornaghi, H.L., Jr., Schiavo, L.S.A.: Sugarcane as an alternative green activator to conventional vulcanization additives in natural rubber compounds: thermal degradation study. J. Clean. Prod. 207, 248–260 (2019)

    Google Scholar 

  34. Kaewsakul, W.: Silica-reinforced natural rubber for low rolling resistance, energy-saving tires: aspects of mixing, formulation and compatibilization. Chapter 5, pp 80–90. University of Twente. https://doi.org/10.3990/1.9789036535151 (2013)

  35. de Paiva, F.F.G., et al.: Sugar bagasse fibers as semi-reinforcement filler in natural rubber composite sandals. J. Mater. Cycles Waste Manag. (2018). https://doi.org/10.1007/s10163-018-0801-y

    Article  Google Scholar 

  36. Turmanova, S.G., Genieva, S., Vlaev, L.: Obtaining some polymer composites filled with rice husks ash-a review. Can. Center Sci. Educ. (2012). https://doi.org/10.5539/ijc.v4n4p62

    Article  Google Scholar 

  37. Boonstra, B.: Reinforcement by Fillers: Rubber Technology and Manufacture. Butterworths, Norwich (1987)

    Google Scholar 

  38. Yan, Z., Zhang, J., Zhang, H., Wang, H.: Improvement of mechanical properties of noil hemp fiber reinforced polypropylene composites by resin modification and fiber treatment. Adv. Mater. Sci. Eng. 2013, 1–7 (2013)

    Google Scholar 

  39. A. International: ASTM D412: Standard Method of Tension Testing of Vulcanized Rubber. ASTM International, West Conshohocken (2008)

    Google Scholar 

  40. Santos, R.D., Angostini, D.L.D.S., Camargo, F., Reis, E.A.P.D., Ruiz, M.R., Budemberg, E.R., Teixeira, S.R., Job, A.E.: Sugarcane bagasse ash: new filler to natural rubber composite. Polimeros 24, 646–653 (2014)

    Google Scholar 

  41. ASTM, D 2084–01: Standard test method for rubber property-vulcanization using oscillating disk cure meter, USA, West Conshohocken: ASTM (2020)

  42. dos Maiza, S., dos Ozorio, E.A.P., Reis, S.R., Teixeira, F.S., Bellucci, A.E.: Job: Sugarcane bagasse ash as a reinforcing filler in thermoplastic elastomers: structural and mechanical characterizations. J. Appl. Polym. Sci. 132, 1–7 (2015)

    Google Scholar 

  43. Rainho Teixeira, S., de Souza, A.E., Peña, A.F.V., de Lima, R.G., Álvaro Gil, M.: Use of charcoal and partially pirolysed biomaterial in fly ash to produce briquettes: sugarcane bagasse. Alternative fuel. chapter 4. pp 177–200, Intech Open (2011)

  44. de Lima, R. G., Miguel, A. G.: Use of charcoal and partially pirolysed biomaterial in fly ash to produce briquettes: sugarcane bagasse. www.Intechopen.com. 189–194 (2011)

  45. Dall'AntoniaI, A. C., Martins, M.A., Moreno, R.M.B., Mattoso, L.H.C., Gonçalves, P.S., Job, A.E.: Caracterização mecânica e térmica da borracha natural formulada e vulcanizada dos clones: GT 1, IAN 873, pb235e RRIM 600. Polímeros: Ciência e Tecnologia. 19, 63–71 (2009)

  46. Escócio, V.A., Martins, A.F., Visconte, L.L., Nunes, R.C., Costa, D.M.: Influência da mica nas propriedades mecânicas e dinâmico-mecânicas de composições de borracha natura. Polimeros 13, 130–134 (2003)

    Google Scholar 

  47. Malmqvist, M., Olofsson, G.: U.S. Patent 4.833.093. Method of Silanization of surfaces. https://patents.google.com/patent/US4833093A. (1989) Accessed 3 Nov 2020

  48. Mohamad, K.K., Bishnoi, A.: Study and development of green elastomeric compounds. J. Biotechnol. Biores. 1(4), 000516 (2019)

    Google Scholar 

  49. Huabcharoen, P., Wimolmala, E., Markpin, T., Sombatsompop, N.: Purification and characterization of silica from sugarcane bagasse ash as a reinforcing filler in natural rubber composites. BioResources 12, 1228–1245 (2017)

    Google Scholar 

  50. Sengloyluan, K., Sahakaro, K., Dierkes, W. K., Noordermeer, J. W. M.: Reinforcement efficiency of silica in dependence of different types of silane coupling agents in natural rubber-based tire compounds. https://pdfs.semanticscholar.org/859a/e329712d4a8b13fc434f930b21f7e55b1a80.pdf. (2016) Accessed 3 Nov 2020

  51. Derrick, M.R., Stulik, D., Landry, J.M.: Infrared spectroscopy in conservation science. Chapter 5. Spectral Interpretation. pp 82–129. Los Angeles, J. Paul Getty Trust (1999)

  52. Mattoso, L.H.C., et al.: Physicomechanical properties of nanocomposites based on cellulose nanofibre and natural rubber latex. Cellulose 20, 417–427 (2013)

    Google Scholar 

  53. Blume, A., Evonik Industries AG, Wessling, El-Roz, M., Thibault-Starzyk, F.: Infrared study of the silica/silane reaction. Test. Meas. 10, 63–70 (2013)

  54. Abdelmouleh, M., Boufi, S., Belgacem, M.N., Dufresne, A.: Short natural-fiber reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibers loading. Compos. Sci. Technol. 67, 1627–1639 (2007)

    Google Scholar 

  55. Hayichelaeh, C., Reuvekamp, L.A.E.M., Dierkes, W.K., Blume, A., Noordermeer, J.W.M., Sahakaro, K.: Enhancing the silanization reaction of the silica-silane system by different amines in model and practical silica-filled natural rubber compounds. Polymers 10, 584 (2018)

    Google Scholar 

  56. Velasco-Santos, C., Martinez-Hernandez, A.L., Brostow, W., Castaño, V.M.: Influence of silanization treatment on thermomechanical properties of multiwalled carbon nanotubes: poly(methylmethacrylate) nanocomposites. J. Nanomater. (2011). https://doi.org/10.1155/2011/928659

    Article  Google Scholar 

  57. Ghani, H., Fatma Abd Karim, S., Ramli, R., Musa, M., Jaapar, J.: Effect of bio fillers on mechanical properties of natural rubber latex films. Eng. Mater. 797, 249–254 (2019)

    Google Scholar 

  58. Geethamma, V.G., Kalaprasad, G., Groeninckx, G., Thomas, S.: Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Composites 36, 1499–1506 (2005)

    Google Scholar 

  59. Balakrishnan, P., Gopi, S., Geethamma, V.G., Kalarikkal, N., Thomas, S.: Cellulose nanofiber vs nanocrystals from pineapple leaf fiber: a comparative studies on reinforcing efficiency on starch nanocomposites. Macromol. Symp. 380, 1–7 (2018)

    Google Scholar 

  60. Yang, J.K., Park, W., Ryu, Ch., Kim, S.J., Kim, D., Kim, J.-H., Seo, G.: Effects of coupling and dispersion agents on the properties of styrene-butadiene rubber/butadiene rubber compounds reinforced with different silica contents. Elastomers Compos. 53, 109–123 (2018)

    Google Scholar 

  61. Ramier, J., Gauthier, C., Chazeau, L., Stelandre, L., Guy, L.: Payne effect in silica-filled styrene-butadiene rubber: influence of surface treatment. J. Polym. Sci. Part B (2007). https://doi.org/10.1002/polb.21033

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank POSMAT, UNESP, and AIUP for the fellowship with which this formation process is possible. Thanks also to Instituto Tecnológico Metropolitano for supporting this research and to its Translation Agency for language editing the original manuscript. In addition, we would like to thank Alto Alegre industry, Santo Inácio, Parana- Brazil for kindly providing the SCBA for this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the manuscript and read and approved its final version for submission.

Corresponding author

Correspondence to Giovanni Barrera Torres.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrera Torres, G., Dognani, G., da Silva Agostini, D.L. et al. Potential Eco-friendly Application of Sugarcane Bagasse Ash in the Rubber Industry. Waste Biomass Valor 12, 4599–4613 (2021). https://doi.org/10.1007/s12649-020-01309-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01309-6

Keywords

Navigation