Skip to main content
Log in

Analytical and Numerical Study on Thermally Developing Forced Convective Flow in a Channel Filled with a Highly Porous Medium Under Local Thermal Non-Equilibrium

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

An analytical and numerical study was made on thermally developing forced convective flow in a channel filled with a fluid-saturated porous medium, subject to constant heat flux, under local thermal non-equilibrium. The Brinkman-extended Darcy model was employed to investigate the combined effects of the Darcy number, Biot number, effective thermal conductivity ratio and Graetz number on the longitudinal thermal development in a channel filled with a highly porous medium. 3D convective regime maps were constructed for wide ranges of the parameters, using a 3D coordinate system based on the Biot, Darcy and Graetz number coordinates. The 3D convective regime maps proposed in this study enable one to identify the three distinctive thermal regions possible along the longitudinal coordinate in a channel, namely the entrance developing region, transition region and fully developed region, depending on the relative thicknesses of the fluid and solid thermal boundary layers. It has been found that the Darcy number strongly influences the heat transfer rate in the developing region, yielding a higher Nusselt number for a lower Darcy number, whereas both Biot number and the effective thermal conductivity ratio markedly influence the level of the fully developed Nusselt number. The heat transfer performance evaluation carried out under equal pumping power for the aluminum foam embedded channel saturated with air reveals that a substantial heat transfer argumentation is possible by filling the channel with an aluminum foam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors declare that there are no data and materials available.

Abbreviations

\(Bi\) :

\(\frac{{h_{v} H^{2} }}{{k_{se} }}\) Biot number

\(c_{pf}\) :

Specific heat of fluid at constant pressure (J/kg K)

\(Da\) :

\(\frac{K}{{H^{2} }}\) Darcy number

\(d_{m}\) :

Pore diameter (m)

\(H\) :

Half of the channel height (m)

\(h_{}\) :

\(\frac{{q_{w} }}{{\left( {T_{w} - T_{fB} } \right)}}\) Heat transfer coefficient (W/m2K)

\(h_{f}\) :

Heat transfer coefficient of an empty channel (W/m2K)

\(h_{v}\) :

Interstitial volumetric heat transfer coefficient (W/m3K)

\(K\) :

Permeability (m2)

\(k_{fe}\) :

Effective thermal conductivity for the fluid phase (W/mK)

\(k_{se}\) :

Effective thermal conductivity for the solid phase (W/mK)

\(Nu_{H}\) :

\(\frac{{q_{w} H}}{{\left( {T_{w} - T_{e} } \right)k_{fe} }}\) Local Nusselt number

\(Nu_{Nield}\) :

Local Nusselt number defined by Nield et al.

\(p\) :

Intrinsic pressure (Pa)

\(PP\) :

\(\left( {\left( {\frac{{\rho_{f} u_{B} H}}{{\mu_{f} }}} \right)^{3} \left( { - \frac{dp}{{dx}}} \right)\frac{H}{{\rho_{f} u_{B}^{2} }}} \right)^{\frac{1}{3}}\) Dimensionless pumping power

\(q_{w}\) :

Wall heat flux (W/m2)

\(T\) :

Temperature (K)

\(T_{0}\) :

Inlet fluid temperature (K)

\(T_{fB}\) :

Fluid-phase bulk mean temperature (K)

\(T_{fB}^{*}\) :

\(\frac{{\left( {T_{fB} - T_{0} } \right)}}{{\left( {T_{w} - T_{0} } \right)}}\) Dimensionless fluid-phase bulk mean temperature

\(T_{fc}^{*}\) :

\(\frac{{\left( {T_{fc} - T_{0} } \right)}}{{\left( {T_{w} - T_{0} } \right)}}\) Dimensionless fluid-phase temperature at the channel center

\(T_{sc}^{*}\) :

\(\frac{{\left( {T_{sc} - T_{0} } \right)}}{{\left( {T_{w} - T_{0} } \right)}}\) Dimensionless solid-phase temperature at the channel center

\(u, v\) :

Darcian velocity (apparent velocity) components (m/s)

\(u_{B}\) :

Bulk mean velocity (m/s)

\(x\) :

Streamwise boundary layer coordinate (m)

\(x_{1} , x_{2}\) :

Coordinate point for the convective regime transition (m)

\(x^{*}\) :

Dimensionless streamwise coordinate \(x^{*} = x/H\)

\(y\) :

Coordinate normal to the wall surface (m)

\(y^{*}\) :

Dimensionless vertical coordinate \(y^{*} = y/H\)

\({\upgamma }\) :

Ratio of the effective fluid thermal conductivity to its solid-phase counterpart \({ }\gamma = \frac{{k_{fe} }}{{k_{se} }}\)

\(\delta\) :

Thermal boundary layer thickness (m)

\(\delta_{f}^{*}\) :

Dimensionless fluid-phase thermal boundary layer thickness \(\delta_{f}^{*} = \delta_{f} /H\)

\(\delta_{s}^{*}\) :

Dimensionless solid-phase thermal boundary layer thickness \(\delta_{s}^{*} = \delta_{s} /H\)

\(\varepsilon\) :

Porosity

\(\zeta\) :

\(\frac{{1 + \sqrt {9 + 4\varepsilon /Da} }}{2}\) Exponent for the velocity profile

\(\mu_{f}\) :

Fluid viscosity (Pa s)

\(\xi\) :

\(\frac{{x^{*} }}{{\left( {\frac{{{\uprho }_{f} {\text{c}}_{{p_{f} }} uH}}{{k_{fe} }}} \right)}}\) Graetz number

\(\xi_{1} , \xi_{2}\) :

Dimensionless coordinate point for the convective regime transition

\(\rho_{f}\) :

Fluid density (kg/m3

B :

Bulk mean

C :

Channel center

\(f\) :

Fluid phase

\(s\) :

Solid phase

\(w\) :

Wall

References

  • Amiri, A., Vafai, K.: Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media. Int. J. Heat Mass Transfer 37, 939–954 (1994)

    Article  Google Scholar 

  • Bai, X., Nakayama, A.: A local thermal non-equilibrium integral analysis for forced convective thermal boundary development in a channel filled with a fluid-saturated porous medium. Int. J. Heat Mass Transfer 142, 118446 (2019)

    Article  Google Scholar 

  • Bai, X., Zheng, Z., Nakayama, A.: Heat transfer performance analysis on lattice core sandwich panel structures. Int. J. Heat Mass Transfer 143, 118525 (2019)

    Article  Google Scholar 

  • Buonomo, B., Cascetta, F., Lauriat, G., Manca, O.: Convective heat transfer in thermally developing flow in micro-channels filled with porous media under local thermal non-equilibrium conditions, Energy Procedia 148, 1058–1065 (2018).

  • Buonomo, B., Manca, O., Lauriat, G.: Forced convection in micro-channels filled with porous media in local thermal non-equilibrium conditions, Int J Thermal Sci 77, 206–222 (2014).

  • Calmidi, V. V.: Transport phenomena in high porosity metal foams, Ph.D. Thesis, University of Colorado, Denver, CO (1998).

  • Cheng, P.: Mixed convection about a horizontal cylinder and a sphere in a fluid saturated porous medium. Int. J. Heat Mass Transfer 25, 1245–1247 (1982)

    Article  Google Scholar 

  • Cheng, P., Minkowycz, W.J.: Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike. J. Geophys. Res. 82, 2040–2044 (1977)

    Article  Google Scholar 

  • Dehghan, M., Valipour, M.S., Keshmiri, A., Saedodin, S., Shokri, N.: On the thermally developing forced convection through a porous material under the local thermal non-equilibrium condition: An analytical study. Int. J. Heat Mass Transf. 92, 815–823 (2016a)

    Article  Google Scholar 

  • Dehghan, M., Valipour, M.S., Saedodin, S., Mahmoudi, Y.: Thermally developing flow inside a porous-filled channel in the presence of internal heat generation under local thermal non-equilibrium condition: A perturbation analysis. Appl. Therm. Eng. 98, 827–834 (2016b)

    Article  Google Scholar 

  • Jiang, P.X., Ren, Z.P.: Numerical investigation of forced convection heat transfer in porous media using a thermal non-equilibrium model. Int. J. of Heat Fluid Flow 22, 102–110 (2001)

    Article  Google Scholar 

  • Kaviany, M.: Laminar flow through a porous channel bounded by isothermal parallel plates. Int. J. Heat Mass Transfer 28, 841–858 (1985)

    Google Scholar 

  • Kuwahara, F., Yang, C., Ando, K., Nakayama, A.: Exact solutions for a thermal nonequilibrium model of fluid saturated porous media based on an effective porosity. J. Heat Transfer 133(11), 12602 (2011). https://doi.org/10.1115/1.4004354

    Article  Google Scholar 

  • Kuznetsov, A.V.: Thermal nonequilibrium, non-Darcian forced convection in a channel filled with a fluid saturated porous medium – a perturbation solution. Appl. Sci. Res. 57, 119–131 (1997)

    Article  Google Scholar 

  • Kuznetsov, A.V., Nield, D.A.: Thermally Developing forced convection in a porous medium occupied by a rarefied gas: Parallel plate channel or circular tube with walls at constant heat flux. Transp. Porous Media 76, 345–362 (2009)

    Article  Google Scholar 

  • Lee, D.Y., Vafai, K.: Analytical characterization and conceptual assessment of solid and fluid temperature differentials in porous media. Int. J. Heat Mass Transfer 42(3), 423–435 (1999)

    Article  Google Scholar 

  • Nakayama, A.: PC-aided numerical heat transfer and convective flow. CRC Press, Boca, Raton (1995)

    Google Scholar 

  • Nakayama, A., Ando, K., Yang, C., Sano, Y., Kuwahara, F., Liu, J.: A study on interstitial heat transfer in consolidated and unconsolidated porous media. Heat Mass Transf. 45, 1365–1372 (2009)

    Article  Google Scholar 

  • Nakayama, A., Kokudai, T., Koyama, H.: Non-Darcian boundary layer flow and forced convective heat transfer over a flat plate in a fluid-saturated porous medium. J. Heat Transfer 112(1), 157–162 (1990)

    Article  Google Scholar 

  • Nakayama, A., Koyama, H., Kuwahara, F.: An analysis on forced convection in a channel filled with a Brinkman-Darcy porous medium: Exact and approximate solutions. Warme-und Stoffubertrangung 23, 291–295 (1988)

    Article  Google Scholar 

  • Nakayama, A., Pop, I.: A unified similarity transformation for free, forced and mixed convection in Darcy and non-Darcy porous media. Int. J. Heat Mass Transfer 34, 357–367 (1991)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in porous media. Spring Verlag, New York (1992)

    Book  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V., Xiong, M.: Effect of local thermal non-equilibrium on thermally developing forced convection in a porous medium. Int. J. Heat and Mass Transfer 45, 4949–4955 (2002)

    Article  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V., Xiong, M.: Thermally developing forced convection in a porous medium: parallel plate channel or circular tube with walls at constant temperature. J. Porous Media 7, 19–27 (2004)

    Article  Google Scholar 

  • Ouyang, X.-L., Vafai, K., Jiang, P.-X.: Analysis of thermally developing flow in porous media under local thermal non-equilibrium conditions. Int. J. Heat Mass Transfer 67, 768–775 (2013)

    Article  Google Scholar 

  • Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington, DC (1980)

    Google Scholar 

  • Patankar, S.V., Spalding, D.B.: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transfer 15, 551–559 (1972)

    Google Scholar 

  • Quintard, M.: Modelling local non-equilibrium heat transfer in porous media, Proc. 11th Int. Heat Transfer Conf. 1, 279–285 (1998).

  • Quintard, M., Whitaker, S.: One and two equation models for transient diffusion processes in two-phase systems. Adv. Heat Transfer 23, 369–465 (1993)

    Article  Google Scholar 

  • Vafai, K.: Convective flow and heat transfer in variable-porosity media. J. Fluid Mech. 147, 233–259 (1984)

    Article  Google Scholar 

  • Vafai, K., Kim, S.J.: Forced convection in a channel filled with a porous Medium: An exact solution. J. Heat Transfer 111(4), 1103–1106 (1989)

    Article  Google Scholar 

  • Vafai, K., Sozen, M.: Analysis of energy and momentum transport for fluid flow through a porous bed. J. Heat Transfer 112, 690–699 (1990)

    Article  Google Scholar 

  • Yang, C., Ando, K., Nakayama, A.: A local thermal non-equilibrium analysis of fully developed forced convective flow in a tube filled with a porous medium. Transp. Porous Media 89, 237–249 (2011a)

    Article  Google Scholar 

  • Yang, C., Kuwahara, F., Liu, W., Nakayama, A.: Thermal non-equilibrium forced convective flow in an annulus filled with a porous medium. Open Trans. Phenomena J. 3, 31–39 (2011b)

    Article  Google Scholar 

  • Zhang, W., Bai, X., Bao, M., Nakayama, A.: Heat transfer performance evaluation based on local thermal non-equilibrium for air forced convection in channels filled with metal foam and spherical particles. Appl. Therm. Eng. 145, 735–742 (2018)

    Article  Google Scholar 

  • Zhang, W., Li, W., Nakayama, A.: An analytical consideration of steady-state forced convection within a nanofluid-saturated metal foam. J. Fluid Mech. 769, 590–620 (2015)

    Article  Google Scholar 

Download references

Funding

The authors declare that no funding supported the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Nakayama.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, Y., Bai, X., Kuwahara, F. et al. Analytical and Numerical Study on Thermally Developing Forced Convective Flow in a Channel Filled with a Highly Porous Medium Under Local Thermal Non-Equilibrium. Transp Porous Med 136, 541–567 (2021). https://doi.org/10.1007/s11242-020-01524-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01524-8

Keywords

Navigation