Skip to main content
Log in

Rock Porous Structure Characterization: A Critical Assessment of Various State-of-the-Art Techniques

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The porous structure of geomaterials is of utmost importance for various industrial and natural processes. In this study, various conventional porous structure characterization techniques such as mercury intrusion porosimetry (MIP), nuclear magnetic resonance (NMR), micro-X-ray computed tomography (μCT) imaging, as well as gas injection have been employed to perform a systematic and critical evaluation of all such techniques for characterization of a carbonate rock sample porous structure. The porosity obtained from μCT (5 μm/voxel) (21.5%) is closer than the overall porosity obtained by MIP (17.23%) to the gas porosimetry result (23%). The 5% difference could be due to inaccessible pores to mercury, which can be accessible to nitrogen with much smaller molecules. The porosity obtained from NMR is 21.4%. It is lower than porosity values by μCT (5 μm/voxel) and by gas injection and higher than the prediction of MIP. The porosity is obtained by μCT, but the much lower resolution (27.5 μm/voxel) results in 8.19% underestimating the porosity by around 50%. Regarding permeability, the results of the NMR technique are highly dependent on the cutoff range used and very different from other techniques, whereas the permeability obtained by MIP is around 18.42 mD, close to that obtained by gas permeameter (20 mD). The μCT imaging provides the opportunity to measure pore and throat size distribution directly, to achieve open and closed porosity, the coordination number of pores and surface and volume characteristics of the porous medium, which can hardly be performed through other techniques. The resolution of images, however, fully controls the obtained pore and throat size distribution in CT analysis. The Kolmogorov–Smirnov distribution analysis reveals that the resulting pore size distribution from MIP is rather a rough estimation of the throat size distribution obtained from μCT (5 μm/voxel), while NMR prediction can provide a rather good approximation of the pore size distribution obtained from μCT (5 μm/voxel). The NMR prediction is however dependent on the choice made for the surface relaxivity coefficient, and changing it would significantly affect the resulting distribution. The results of this study provide further insight and elucidate the differences of the quantities such as porosity, permeability, and pore and throat size distribution obtained from various techniques which are essential either as an input to numerical models of flow and transport in porous media or as a building block of the theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

BVI:

Bulk volume irreducible

CPMG:

Carr–Purcell–Meiboom–Gill

CT:

Computed tomography

FFI:

Free fluids index

GIT:

Green imaging technologies

MIP:

Mercury intrusion porosimetry

NMR:

Nuclear magnetic resonance

PSD:

Pore size distribution

SNR:

Signal-to-noise ratio

XRD:

X-ray diffractometer

PDP:

Pulse-decay permeametry

ROI:

Region of interest

SEM:

Scanning electron microscopy

FIB–SEM:

Focused ion beam–scanning electron microscopy

HIM:

Helium ion microscopy

CDF:

Cumulative distribution function

GIW:

Generalized inverse Weibull distribution

Pressure:

1 psi (6894.76 Pa)

Permeability:

1 mD (0.9869 μm2)

References

  • Abragam, A., Abragam, A.: The Principles of Nuclear Magnetism. Oxford University Press, Oxford (1961)

    Google Scholar 

  • Adebayo, A.R., Kandil, M.E., Okasha, T.M., Sanni, M.L.: Measurements of electrical resistivity, NMR pore size and distribution, and X-ray CT-scan for performance evaluation of CO2 injection in carbonate rocks: a pilot study. Int. J. Greenh. Gas Control 63, 1–11 (2017)

    Article  Google Scholar 

  • Adler, P.M., Jacquin, C.G., Quiblier, J.A.: Flow in simulated porous media. Int. J. Multiph. Flow 16(4), 691–712 (1990)

    Article  Google Scholar 

  • Alqahtani, N., Alzubaidi, F., Armstrong, R.T., Swietojanski, P., Mostaghimi, P.: Machine learning for predicting properties of porous media from 2d X-ray images. J. Petrol. Sci. Eng. 184, 106514 (2020)

    Article  Google Scholar 

  • Armstrong, R.T., McClure, J.E., Robins, V., Liu, Z., Arns, C.H., Schlüter, S., Berg, S.: Porous media characterization using minkowski functionals: theories, applications and future directions. Transp. Porous Media 130(1), 305–335 (2019)

    Article  Google Scholar 

  • Arns, C.H., Knackstedt, M.A., Martys, N.S.: Cross-property correlations and permeability estimation in sandstone. Phys. Rev. E 72, 46304 (2005)

    Article  Google Scholar 

  • Benavides, F., Leiderman, R., Souza, A., Carneiro, G., de Vasconcellos Azeredo, R.B.: Pore size distribution from NMR and image based methods: a comparative study. J. Pet. Sci. Eng. 184, 106321 (2020)

    Article  Google Scholar 

  • Bloembergen, N., Purcell, E.M., Pound, R.V.: Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev. 73, 679 (1948)

    Article  Google Scholar 

  • Bryant, S., Cade, C., Mellor, D.: Permeability prediction from geologic models. Am. Assoc. Pet. Geol. Bull. 77, 1338–1350 (1993)

    Google Scholar 

  • Büttner, J.: Permeability of young sea ice from microtomographic images. M.Sc. thesis, Geophysical Institute, University of Bergen, Bergen, Norway (2011)

  • Callaghan, P.T.: Principles of Nuclear Magnetic Resonance Microscopy. Oxford University Press on Demand, Oxford (1993)

    Google Scholar 

  • Cnudde, V., Boone, M.N.: High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth Sci. Rev. 123, 1–17 (2013)

    Article  Google Scholar 

  • Coates, G.R., Xiao, L., Prammer, M.G.: NMR Logging Principles and Applications. Halliburton Energy Services Publication, Houston (1999)

    Google Scholar 

  • De Gusmao, F.R., Ortega, E.M., Cordeiro, G.M.: The generalized inverse Weibull distribution. Stat. Pap. 52(3), 591–619 (2011)

    Article  Google Scholar 

  • Dejam, M., Hassanzadeh, H.: The role of natural fractures of finite double-porosity aquifers on diffusive leakage of brine during geological storage of CO2. Int. J. Greenh. Gas Control 78, 177–197 (2018a)

    Article  Google Scholar 

  • Dejam, M., Hassanzadeh, H.: Diffusive leakage of brine from aquifers during CO2 geological storage. Adv. Water Resour. 111, 36–57 (2018b)

    Article  Google Scholar 

  • Feia, S., Ghabezloo, S., Bruchon, J.-F., Sulem, J., Canou, J., Dupla, J.-C.: Experimental evaluation of the pore-access size distribution of sands. Geotech. Test. J. 37, 613–620 (2014)

    Article  Google Scholar 

  • Fleury, M.: NMR surface relaxivity determination using NMR apparent diffusion curves and BET measurements. In: International Symposium of the Society of Core Analysts (pp. 10–12). Canada: Calgary. Available online at: http://jgmaas.com/SCA/2007/35.pdf (2007)

  • Franc, J., Guibert, R., Horgue, P., Debenest, G., Plouraboué, F.: Image-based effective medium approximation for fast permeability evaluation of porous media core samples. Comput. Geosci. 24, 1–13 (2020)

    Google Scholar 

  • Fredrich, J.T.: 3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes. Phys. Chem. Earth Part A. 24(7), 551–561 (1999)

    Article  Google Scholar 

  • Gao, F., Song, Y., Li, Z., Xiong, F., Chen, L., Zhang, X., Chen, Z., Moortgat, J.: Quantitative characterization of pore connectivity using NMR and MIP: a case study of the Wangyinpu and Guanyintang shales in the Xiuwu basin, Southern China. Int. J. Coal Geol. 197, 53–65 (2018)

    Article  Google Scholar 

  • Gao, H., Wang, C., Cao, J., He, M., Dou, L.: Quantitative study on the stress sensitivity of pores in tight sandstone reservoirs of Ordos basin using NMR technique. J. Pet. Sci. Eng. 172, 401–410 (2019)

    Article  Google Scholar 

  • Gharedaghloo, B., Price, J.S., Rezanezhad, F., Quinton, W.L.: Evaluating the hydraulic and transport properties of peat soil using pore network modeling and X-ray micro computed tomography. J. Hydrol. 561, 494–508 (2018)

    Article  Google Scholar 

  • Ghomeshi, S., Kryuchkov, S., Kantzas, A.: An investigation into the effects of pore connectivity on T2 NMR relaxation. J. Magn. Reson. 289, 79–91 (2018)

    Article  Google Scholar 

  • Hernández Zubeldia, E., de SM Ozelim, L.C., Luís Brasil Cavalcante, A., Crestana, S.: Cellular automata and X-ray microcomputed tomography images for generating artificial porous media. Int. J. Geomech. 16(2), 04015057 (2016)

    Article  Google Scholar 

  • Hidajat, I., Rastogi, A., Singh, M., Mohanty, K.K.: Transport properties of porous media reconstructed from thin-sections. SPE J. 7(01), 40–48 (2002)

    Article  Google Scholar 

  • Hilpert, M., Miller, C.T.: Pore-morphology-based simulation of drainage in totally wetting porous media. Adv. Water Resour. 24, 243–255 (2001)

    Article  Google Scholar 

  • Hou, D., Li, D., Hua, P., Jiang, J., Zhang, G.: Statistical modelling of compressive strength controlled by porosity and pore size distribution for cementitious materials. Cem. Concr. Compos. 96, 11–20 (2019)

    Article  Google Scholar 

  • Hürlimann, M.D., Venkataramanan, L., Flaum, C., Speier, P., Karmonik, C., Freedman, R., Heaton, N.: Diffusion-Editing: New NMR Measurement of Saturation and Pore Geometry, SPWLA 43rd Annual Logging Symposium (2002)

  • Kamrava, S., Tahmasebi, P., Sahimi, M.: Linking morphology of porous media to their macroscopic permeability by deep learning. Transp. Porous Media 131(2), 427–448 (2020)

    Article  Google Scholar 

  • Kim, F.H., Penumadu, D., Schulz, V.P., Wiegmann, A.: Pore size distribution and soil water suction curve from micro-tomography measurements and real 3-D digital microstructure of a compacted granular media by using direct numerical simulation technique. In: Laloui, L., Ferrari, A. (eds.) Multiphysical Testing of Soils and Shales, pp. 171–176. Springer (2013)

  • Klaver, J., Desbois, G., Littke, R., Urai, J.L.: BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier Shales. Mar. Pet. Geol. 59, 451–466 (2015)

    Article  Google Scholar 

  • Li, Y., Zhang, C., Tang, D., Gan, Q., Niu, X., Wang, K., Shen, R.: Coal pore size distributions controlled by the coalification process: an experimental study of coals from the Junggar, Ordos and Qinshui basins in China. Fuel 206, 352–363 (2017)

    Article  Google Scholar 

  • Li, X., Kang, Y., Haghighi, M.: Investigation of pore size distributions of coals with different structures by nuclear magnetic resonance (NMR) and mercury intrusion porosimetry (MIP). Measurement 116, 122–128 (2018)

    Article  Google Scholar 

  • Ma, X., Guo, S., Shi, D., Zhou, Z., Liu, G.: Investigation of pore structure and fractal characteristics of marine-continental transitional shales from Longtan Formation using MICP, gas adsorption, and NMR (Guizhou, China). Mar. Pet. Geol. 107, 555–571 (2019)

    Article  Google Scholar 

  • Moro, F., Böhni, H.: Ink-bottle effect in mercury intrusion porosimetry of cement-based materials. J. Colloid Interface Sci. 246, 135–149 (2002)

    Article  Google Scholar 

  • Morriss, C., Rossini, D., Straley, C., Tutunjian, P., Vinegar, H.: Core Analysis By Low-field NMR. The Log Analyst (Society of Petrophysicists and Well-Log Analysts), 38(2), Document ID: SPWLA-1997-v38n2a3. Available online at: https://www.onepetro.org/journal-paper/SPWLA-1997-v38n2a3.

  • Mostaghimi, P., Blunt, M.J., Bijeljic, B.: Computations of absolute permeability on micro-CT images. Math. Geosci. 45(1), 103–125 (2013)

    Article  Google Scholar 

  • Mourzenko, V.V., Thovert, J.F., Adler, P.M.: Trace analysis for fracture networks with anisotropic orientations and heterogeneous distributions. Phys. Rev. E 83(3), 031104 (2011)

    Article  Google Scholar 

  • Øren, P.E., Bakke, S.: Process based reconstruction of sandstones and prediction of transport properties. Transp. Porous Media 46(2–3), 311–343 (2002)

    Article  Google Scholar 

  • Qiu, X., Tan, S.P., Dejam, M., Adidharma, H.: Experimental study on the criticality of a methane/ethane mixture confined in nanoporous media. Langmuir 35, 11635–11642 (2019a)

    Article  Google Scholar 

  • Qiu, X., Tan, S.P., Dejam, M., Adidharma, H.: Simple and accurate isochoric differential scanning calorimetry measurements: phase transitions for pure fluids and mixtures in nanopores. Phys. Chem. Chem. Phys. 21, 224–231 (2019b)

    Article  Google Scholar 

  • Qiu, X., Tan, S.P., Dejam, M., Adidharma, H.: Isochoric measurement of the evaporation point of pure fluids in bulk and nanoporous media using differential scanning calorimetry. Phys. Chem. Chem. Phys. 22, 7048–7057 (2020)

    Article  Google Scholar 

  • Remeysen, K., Swennen, R.: Application of microfocus computed tomography in carbonate reservoir characterization: possibilities and limitations. Mar. Pet. Geol. 25, 486–499 (2008)

    Article  Google Scholar 

  • Rezaei, A., Abdollahi, H., Derikvand, Z., Hemmati-Sarapardeh, A., Mosavi, A., Nabipour, N.: Insights into the effects of pore size distribution on the flowing behavior of carbonate rocks: linking a nano-based enhanced oil recovery method to rock typing. Nanomaterials 10, 972 (2020)

    Article  Google Scholar 

  • Song, S.-B., Liu, J.-F., Yang, D.-S., Ni, H.-Y., Huang, B.-X., Zhang, K., Mao, X.-B.: Pore structure characterization and permeability prediction of coal samples based on SEM images. J. Nat. Gas Sci. Eng. 67, 160–171 (2019)

    Article  Google Scholar 

  • Spanne, P., Thovert, J.F., Jacquin, C.J., Lindquist, W.B., Jones, K.W., Adler, P.M.: Synchrotron computed microtomography of porous media: topology and transports. Phys. Rev. Lett. 73(14), 2001 (1994)

    Article  Google Scholar 

  • Sweijen, T., Aslannejad, H., Hassanizadeh, S.M.: Capillary pressure–saturation relationships for porous granular materials: pore morphology method vs. pore unit assembly method. Adv. Water Resour. 107, 22–31 (2017)

    Article  Google Scholar 

  • Tan, S.P., Qiu, X., Dejam, M., Adidharma, H.: Critical point of fluid confined in nanopores: experimental detection and measurement. J. Phys. Chem. C 123, 9824–9830 (2019)

    Article  Google Scholar 

  • Thovert, J.F., Salles, J., Adler, P.M.: Computerized characterization of the geometry of real porous media: their discretization, analysis and interpretation. J. Microsc. 170(1), 65–79 (1993)

    Article  Google Scholar 

  • Thovert, J.F., Yousefian, F., Spanne, P., Jacquin, C.G., Adler, P.M.: Grain reconstruction of porous media: application to a low-porosity Fontainebleau sandstone. Phys. Rev. E 63(6), 061307 (2001)

    Article  Google Scholar 

  • Timur, A.: Effective porosity and permeability of sandstones investigated through nuclear magnetic resonance principles. In: SPWLA 9th Annual Logging Symposium. Society of Petrophysicists and Well-Log Analysts (1968)

  • Tinet, A.J., Corlay, Q., Collon, P., Golfier, F., Kalo, K.: Comparison of various 3D pore space reconstruction methods and implications on transport properties of nanoporous rocks. Adv. Water Resour. 141, 103615 (2020)

    Article  Google Scholar 

  • Wang, X., Pan, J., Wang, K., Ge, T., Wei, J., Wu, W.: Characterizing the shape, size, and distribution heterogeneity of pore-fractures in high rank coal based on X-ray CT image analysis and mercury intrusion porosimetry. Fuel 282, 118754 (2020)

    Article  Google Scholar 

  • Washburn, E.W.: The dynamics of capillary flow. Phys. Rev. 17, 273–283 (1921)

    Article  Google Scholar 

  • Wiegmann, A.J.B.: Virtual characterization of the pore structure of nonwoven. In: International Nonwoven Technical Conference, Atlanta. Atlanta (2007)

  • Wu, H., Schwartz, D.K.: Nano-particle tracking to probe transport in porous media. Acc. Chem. Res. 53, 2148–2156 (2020)

    Article  Google Scholar 

  • Wu, J., Yuan, Y., Niu, S., Wei, X., Yang, J.: Multiscale characterization of pore structure and connectivity of Wufeng–Longmaxi shale in Sichuan Basin, China. Mar. Pet. Geol. 120, 104514 (2020)

    Article  Google Scholar 

  • Zhang, L., Kou, Z., Wang, H., Zhao, Y., Dejam, M., Guo, J., Du, J.: Performance analysis for a model of a multi-wing hydraulically fractured vertical well in a coalbed methane gas reservoir. J. Pet. Sci. Eng. 166, 104–120 (2018)

    Article  Google Scholar 

  • Zhang, P., Lu, S., Li, J.: Characterization of pore size distributions of shale oil reservoirs: a case study from Dongying sag, Bohai Bay basin, China. Mar. Pet. Geol. 100, 297–308 (2019)

    Article  Google Scholar 

  • Zhao, Y., Sun, Y., Liu, S., Wang, K., Jiang, Y.: Pore structure characterization of coal by NMR cryoporometry. Fuel 190, 359–369 (2017)

    Article  Google Scholar 

  • Zhao, Y., Peng, L., Liu, S., Cao, B., Sun, Y., Hou, B.: Pore structure characterization of shales using synchrotron SAXS and NMR cryoporometry. Mar. Pet. Geol. 102, 116–125 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The enhanced oil recovery laboratories of Shiraz University, Skoltech University, and Abdal Industrial Project Management Co. (MAPSA) are gratefully acknowledged for the collaboration in performing rock sampling, CT, NMR, MIP, XRD, and gas injection experiments. Furthermore, authors acknowledge the constructive comments of anonymous reviewers, which improved the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Riazi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razavifar, M., Mukhametdinova, A., Nikooee, E. et al. Rock Porous Structure Characterization: A Critical Assessment of Various State-of-the-Art Techniques. Transp Porous Med 136, 431–456 (2021). https://doi.org/10.1007/s11242-020-01518-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01518-6

Keywords

Navigation