Skip to main content
Log in

A new feature clustering method based on crocodiles hunting strategy optimization algorithm for classification of MRI images

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In complex data with high dimensions, the dimension reduction methods are used to increase accuracy and speed in the classification algorithms. Feature clustering methods have had a good performance in the selection of important features of data due to using clustering methods. The process of selecting important features of data is a challenge in feature clustering methods which has led to the creation of different algorithms with different performances. The combination of the clustering methods and metaheuristic algorithms, especially the kind of population-based algorithms, have had good results in most cases. In this paper, a new feature clustering method is proposed which is used as a dimension reduction in the classification of brain tumors in 900 magnetic resonance images (MRI). The classification algorithm includes three main steps: in the first step, the Google-Net and ResNet-18 methods have been used for feature extraction of MRI images. Due to the creation of many features using the Google-Net and ResNet-18 methods, a new proposed feature clustering is introduced to reduce the feature dimensions in the second step. In designing the feature clustering algorithm, a new metaheuristic algorithm is introduced which is called the crocodiles hunting strategy optimization algorithm (CHS) that simulates crocodiles’ behavior in hunting. Also, the feature clustering algorithm introduced the new chromosome encoding for feature clustering which is called feature clustering based on the crocodiles hunting strategy optimization algorithm (FC-CHS). Finally, in the third step, the support vector machine (SVM) algorithm is used for classification. According to the results of classification on the MRI images, the proposed algorithm has achieved high accuracy in Google-Net and ResNet features based on confusion matrices. For comparing the performance of the FC-CHS, this algorithm is compared with five well-known dimension reduction algorithms. Also, real data are used to further investigate the performance of the FC-CHS algorithm. The results show that the combination of the FC-CHS and SVM algorithms have been reached high accuracy in Iris, and Wine data, and in other real data, the proposed algorithm is outperformed compared to other dimension reduction methods in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Ramakrishnan, T., Sankaragomathi, B.: A professional estimate on the computed tomography brain tumor images using SVM-SMO for classification and MRG-GWO for segmentation. Pattern Recognit. Lett. 94, 163–171 (2017)

    Article  Google Scholar 

  2. Zhang, N., Ruan, S., Lebonvallet, S., Liao, Q., Zhu, Y.: Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation. Comput. Vis. Image Underst. 115(2), 256–269 (2011)

    Article  Google Scholar 

  3. Mohan, G., Subashini, M.M.: MRI based medical image analysis: survey on brain tumor grade classification. Biomed. Signal Process. Control 39, 139–161 (2018)

    Article  Google Scholar 

  4. Bolón-Canedo, V., Alonso-Betanzos, A.: Ensembles for feature selection: a review and future trends. Inf. Fusion 52, 1–12 (2019)

    Article  Google Scholar 

  5. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  6. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Evolutionary computation, 1999. CEC 99. Proceedings of the 1999 Congress on 1999, pp. 1945–1950. IEEE

  10. Voudouris, C., Tsang, E.: Guided local search and its application to the traveling salesman problem. Eur. J. Oper. Res. 113(2), 469–499 (1999)

    Article  MATH  Google Scholar 

  11. Holland, J.H.: Adaptation in Natural and Artificial Systems An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence, vol. 1. University of Michigan Press, Ann Arbor (1975)

    MATH  Google Scholar 

  12. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)

    Article  Google Scholar 

  14. Beni, G., Wang, J.: Swarm intelligence in cellular robotic systems. In: Robots and Biological Systems: Towards a New Bionics? pp. 703–712. Springer (1993)

  15. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Micro Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth International Symposium on 1995, pp. 39–43. IEEE

  16. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur. J. Oper. Res. 185(3), 1155–1173 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. In. Technical Report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)

  18. Eusuff, M., Lansey, K., Pasha, F.: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng. Optim. 38(2), 129–154 (2006)

    Article  MathSciNet  Google Scholar 

  19. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: International Symposium on Stochastic Algorithms 2009, pp. 169–178. Springer

  20. Yang, X.-S., Deb, S.: Cuckoo search via Lévy flights. In: Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on 2009, pp. 210–214. IEEE

  21. Dai, C., Chen, W., Song, Y., Zhu, Y.: Seeker optimization algorithm: a novel stochastic search algorithm for global numerical optimization. J. Syst. Eng. Electron. 21(2), 300–311 (2010)

    Article  Google Scholar 

  22. Balavand, A., Kashan, A.H.: A package including pre-processing, feature extraction, feature reduction, and classification for MRI classification. In: Optimization in Machine Learning and Applications. pp. 51–68. Springer (2020)

  23. Haralick, R.M., Shanmugam, K.: Textural features for image classification. IEEE Trans. Syst. Man, Cybern. 6, 610–621 (1973)

    Article  Google Scholar 

  24. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 2012, pp. 1097–1105

  26. Simonyan, K., Zisserman, A.J.A.P.A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  27. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2015, pp. 1–9

  28. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In: Advances in Neural Information Processing Systems 2015, pp. 2377–2385

  29. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017, pp. 4700–4708

  30. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017, pp. 1492–1500

  31. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018, pp. 7132–7141

  32. Lu, S., Lu, Z., Zhang, Y.-D.J.: Pathological brain detection based on AlexNet and transfer learning. J. Comput. Sci. 30, 41–47 (2019)

    Article  Google Scholar 

  33. Talo, M., Baloglu, U.B., Yıldırım, Ö., Acharya, U.R.: Application of deep transfer learning for automated brain abnormality classification using MR images. Cognit. Syst. Res. 54, 176–188 (2019)

    Article  Google Scholar 

  34. Das, A.K., Goswami, S., Chakrabarti, A., Chakraborty, B.J.: A new hybrid feature selection approach using feature association map for supervised and unsupervised classification. Expert Syst. Appl. 88, 81–94 (2017)

    Article  Google Scholar 

  35. Jain, D., Singh, V.J.: Feature selection and classification systems for chronic disease prediction: A review. Egypt. Inf. J. 19(3), 179–189 (2018)

    Google Scholar 

  36. Dash, M., Liu, H.: Feature selection for classification. Intell. Data Anal. 1(1–4), 131–156 (1997)

    Article  Google Scholar 

  37. Kumar, V., Minz, S.: Feature selection. Smart Comput. Rev. 4(3), 211–229 (2014)

    Article  Google Scholar 

  38. Shahana, A., Preeja, V.: Survey on feature subset selection for high dimensional data. In: 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT) 2016, pp. 1–4. IEEE

  39. Xi, P., Guan, H., Shu, C., Borgeat, L., Goubran, R.: An integrated approach for medical abnormality detection using deep patch convolutional neural networks. Vis. Comput. 36, 1–14 (2019)

    Google Scholar 

  40. Singh, R., Goel, A., Raghuvanshi, D.: Computer-aided diagnostic network for brain tumor classification employing modulated Gabor filter banks. Vis. Comput. 51, 1–15 (2020)

    Google Scholar 

  41. Abpeykar, S., Ghatee, M., Zare, H., Analysis, D.: Ensemble decision forest of RBF networks via hybrid feature clustering approach for high-dimensional data classification. Comput Stat Data Analy 131, 12–36 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tran, C.T., Zhang, M., Andreae, P., Xue, B., Bui, L.T.J.: Improving performance of classification on incomplete data using feature selection and clustering. Appl. Soft Comput. 73, 848–861 (2018)

    Article  Google Scholar 

  43. Goswami, S., Das, A.K., Chakrabarti, A., Chakraborty, B.J.: A feature cluster taxonomy based feature selection technique. Expert Syst. Appl. 79, 76–89 (2017)

    Article  Google Scholar 

  44. Zhu, P., Zhu, W., Hu, Q., Zhang, C., Zuo, W.: Subspace clustering guided unsupervised feature selection. Pattern Recognit. 66, 364–374 (2017)

    Article  Google Scholar 

  45. Ghimatgar, H., Kazemi, K., Helfroush, M.S., Aarabi, A.J.: An improved feature selection algorithm based on graph clustering and ant colony optimization. Knowl.-Based Syst. 159, 270–285 (2018)

    Article  Google Scholar 

  46. Lane, M.C., Xue, B., Liu, I., Zhang, M.: Particle swarm optimisation and statistical clustering for feature selection. In: Australasian Joint Conference on Artificial Intelligence 2013, pp. 214–220. Springer

  47. Dinets, V.: Apparent coordination and collaboration in cooperatively hunting crocodilians. Ethol. Ecol. Evolu. 27(2), 244–250 (2015)

    Article  Google Scholar 

  48. Olorunda, O., Engelbrecht, A.P.: Measuring exploration/exploitation in particle swarms using swarm diversity. In: Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Computational Intelligence). IEEE Congress on 2008, pp. 1128–1134. IEEE

  49. Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans. Evol. Comput. 9(2), 126–142 (2005)

    Article  Google Scholar 

  50. Lin, L., Gen, M.: Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation. Soft Comput.-A Fusion Found. Methodol. Appl. 13(2), 157–168 (2009)

    MATH  Google Scholar 

  51. Jun, C.: brain tumor dataset. (2017)

  52. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: IEEE International Symposium on 2010 Circuits and Systems (ISCAS), Proceedings of 2010, pp. 253–256. IEEE

  53. Nagi, J., Ducatelle, F., Di Caro, G.A., Cireşan, D., Meier, U., Giusti, A., Nagi, F., Schmidhuber, J., Gambardella, L.M.: Max-pooling convolutional neural networks for vision-based hand gesture recognition. In: 2011 IEEE International Conference on 2011 Signal and Image Processing Applications (ICSIPA), pp. 342–347. IEEE

  54. Liu, T., Fang, S., Zhao, Y., Wang, P., Zhang, J.: Implementation of training convolutional neural networks. arXiv preprint arXiv:1506.01195 (2015)

  55. Vogado, L.H., Veras, R.M., Araujo, F.H., Silva, R.R., Aires, K.R.: Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for classification. Eng. Appl. Artif. Intell. 72, 415–422 (2018)

    Article  Google Scholar 

  56. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: 2015. Cvpr

  57. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016, pp. 770–778

  58. Xu, R.-F., Lee, S.-J.: Dimensionality reduction by feature clustering for regression problems. Inf. Sci. 299, 42–57 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  59. Xu, R., Wunsch, D.: Clustering, vol. 10. Wiley, Hoboken (2008)

    Book  Google Scholar 

  60. Van Der Heijden, F., Duin, R., De Ridder, D., Tax, D.M.: Classification, Parameter Estimation and State Estimation: An Engineering Approach Using MATLAB. Wiley, Hoboken (2005)

    MATH  Google Scholar 

  61. Balavand, A., Kashan, A.H., Saghaei, A.: Automatic clustering based on crow search algorithm-Kmeans (CSA-Kmeans) and data envelopment analysis (DEA). Int. J. Comput. Intell. Syst. 11(1), 1322–1337 (2018)

    Article  Google Scholar 

  62. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  63. Jackson, J.E.: A user’s Guide to Principal Components, vol. 587. Wiley, Hoboken (2005)

    MATH  Google Scholar 

  64. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 61(3), 611–622 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  65. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: Advances in Neural Information Processing Systems 2006, pp. 507–514

  66. Berry, M.W., Browne, M., Langville, A.N., Pauca, V.P., Plemmons, R.J.: Algorithms and applications for approximate nonnegative matrix factorization. Comput. Stat. Data Anal. 52(1), 155–173 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Balavand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balavand, A. A new feature clustering method based on crocodiles hunting strategy optimization algorithm for classification of MRI images. Vis Comput 38, 149–178 (2022). https://doi.org/10.1007/s00371-020-02009-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-02009-x

Keywords

Navigation